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Outline

• Disorder greatly affects diffusion.

• Time averages and ensemble averages are non-equivalent.

• Experiments: anomalous diffusion of single molecules in the cell.

• Random time scale invariant diffusion and transport coefficients.

• Quenched environment gives by far larger fluctuations of the diffusivity
(compared with the annealed model).
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Brownian Motion

δ2 (∆, t) =

∫ t−∆

0
[x(t′ + ∆)− x(t′)]

2
dt′

t−∆
→ 2D∆
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Ergodicity for Brownian particles

• Time averages are reproducible.

• Two measurements of δ2 yield the same result.

• The time and ensemble averages coincide (ergodicity).

δ2 = 〈x2〉.

• Diffusion is normal δ2 ∼ ∆.

• Measure between (0, t) and (t, 2t) yield same results (stationary).

• These properties are broken in single molecule experiments in cells.
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mRNA diffusing in a cell Golding and Cox
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• Bronstien, .... Barkai, Garini PRL (2009). Anomalous diffusion and randomness of time averages is common.
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Continuous Time Random Walk (CTRW)

Dispersive Transport in Amorphous Material Scher-Montroll (1975).

Bead Diffusing in Polymer Network Weitz (2004).

Eli Barkai, Bar-Ilan Univ.



Average Waiting Time is ∞. Diffusion is anomalous 〈r2〉 ∼ tα.
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CTRW: power law waiting times ψ(t) ∼ t−(α+1)
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• Random walk on lattice with jumps to nearest neighbours only.

• ψ(t) ∼ t−1−α with 0 < α < 1 gives 〈r2〉 ∼ tα
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CTRW and ergodicity breaking

• Einstein D = 〈δx2〉
2〈τ〉 .

• Boltzmann-Gibbs: If measurement time t >> 〈τ〉 expect ergodicity.

• Scher-Montroll: If 〈τ〉 → ∞, D → 0 and the process is sub-diffusive.

• Bouchaud: If 〈τ〉 → ∞ expect weak ergodicity breaking.
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Random Time-Scale Invariant Diffusion Constant
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δ2 (∆, t) =

∫ t−∆

0
[x(t′ + ∆)− x(t′)]

2
dt′

t−∆
• He Burov Metzler Barkai PRL (2008), Lubelski, Sokolov, Klafter (ibid).
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Anomalous Seems Normal

〈δ2〉 ∼ 2Dα

Γ(1 + α)

∆

t1−α

• Normal diffusion 〈δ2〉 = 2D∆.

• For anomalous diffusion D(t) ∼ d〈x2〉
dt ∼ t

α−1.

• Aging effect 〈δ
2
〉 decreases when measurement time increases.
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Fluctuations of the time average δ2
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∆= 3

δ2 ∼ s
t number of jumps in (0, t) is s.

Most of measurement time [x(t′+ ∆)− x(t′)]2 = 0 due to long trapping.
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Distribution of δ2

ξ =
s

〈s〉
=

δ2

〈δ2〉
, lim

t→∞
φα (ξ) =

Γ1/α (1 + α)

αξ1+1/α
lα

[
Γ1/α (1 + α)

ξ1/α

]
.
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Finite size effect is important: Anomalous again

〈δ2〉 =

∫ t−∆

0

[
〈x2(t′ + ∆)〉+ 〈x2(t′)〉 − 2〈x(t′ + ∆)x(t′)〉

]
dt

t−∆
.

• We consider the fractional Fokker-Planck dynamics in a binding field V (x)

• If 〈x〉B = 0 namely V (x) = V (−x).

〈x(t1)x(t2)〉 ∼ 〈x2〉B
B(t1/t2, α, 1− α)

Γ(α)Γ(1− α)
.

〈δ2〉 ∼ 〈x2〉B 2 sin(απ)
(1−α)απ

(
∆
t

)1−α

• Neusius,Sokolov, Smith (PRE) 2009. Burov, Metzler, Barkai (PNAS) 2010.
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Aging effect (Diego Krpaf’s experiment)
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• The older you get the slower you are

• Channel protein molecules on a membrane.

• Weigel · · · Krapf PNAS (2011).

Eli Barkai, Bar-Ilan Univ.



Three more experiments showing aging MSD

• Receptor Motion in Living Cells Manzo... Garcia Parajo PRX (2015).

• Insulin granule in pancreatic cell Tabei ... Scherer PNAS (2013).

• Myosin motors in filament system Burov ... Dinner PNAS (2013).
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Quenched trap model

τi = exp(Ex/kBT ) and Ex IID RV.

Exponential density of states ρ(E) = exp(−E/Tg)/Tg

Sojourn time PDF ψ(τ) ∼ τ−(1+T/Tg)
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Ergodic properties of the quenched trap model

• For a finite system of size L the largest waiting time is finite.
It is determined by the deepest trap.

• Quenched trap model is ergodic when we take t→∞ before L→∞.

• Quenched model exhibits non self averaging.
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Non ergodicity mimics inhomogeneity (SOKOLOV)

How to quantify the fluctuations of the quenched model?

Annealed versus quenched models. Where are fluctuations larger?

Is Mittag-Leffler statistics universal?

Role of initial conditions? equilibrium versus non equilibrium initial
state.

Role of dimension d = 2 is critical.
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Distribution of diffusion constant

• The size of the system is crucial

〈δ2〉dis = 2
Γ
(
α−1
)

αΓ (1− α)
1/α

L1/α−1
∆.

• Starting from thermal initial conditions, periodic boundary conditions, the
ensemble average MSD is

〈r2〉eq =
t∑

i τi/L
.

• The SA parameter

SA =
〈O2〉dis − 〈O〉2dis

〈O〉2dis
.

• The EB parameter

EB =
〈O2〉 − 〈O〉2

〈O〉2
.
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SA versus EB parameters
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Distribution of diffusivities α = 2/3, 〈D〉 = 1
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Local and Global Measurements

• Brownian motion: Local = global measurements, when ∆ << L2/D.

• CTRW: Local 6= global measurements.
Both age and exhibit ergodicity breaking.

• Quenched model: Local measurements age (like annealed case).
Global measurement exhibit a diffusivity decreasing with system, super large
fluctuations, and non self averaging.
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Open problems and some further subtle points

• Population splitting.

• Aging initial conditions in CTRW.

• Noise and EB.
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Age and noise matter
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• start at time ta? Observe population splitting T << ta.

• Add noise? crucial for time averages.
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Timing of start of measurement matters

h !Fi ¼ Cþ"!ðta=TÞ
#ð1þ !Þ

gð$="Þ
ðT="Þ1%! ; (15)

for $ & T, with the constant C ¼ fð0Þ. The function g is
defined as gðsÞ ¼ s2!%2LffðnÞ % fð0Þ; n ! s!g in Laplace
space [32]. In the limit $ ! 0, the TA (15) reduces to the
constant C, the expectation value of the observable when
measured at identical positions. For example, if we study
correlations in an equilibrated process, Fðx2; x1Þ ¼ x2x1,
then C ¼ hx2i is the thermal value of x2. Conversely, C
naturally vanishes for TA moments of displacements,
Fðx2; x1Þ ¼ jx2 % x1jq, so it did not appear previously. We
observe that the lag time dependence enters exclusively
through the multiplicative function gð$="Þ. For example,
for fðnÞ ' nq, C ¼ 0, and we recover the previous result
(10). Finally, the factor "! only depends on the ratio ta=T
and the parameter !, and due to a factor T!%1 any TA
converges to the constantC as T ! 1. Note that this depen-
dence on ta andT is universal in the sense that it is indifferent
to the specific choice of the observable F or model of the
jump process xðnÞ, but directly follows from the nature of the
aging counting process nðtÞ. In the Brownian limit ! ¼ 1,
Eq. (15) reduces to h !Fi ¼ fð$="Þ, restoring the equiva-
lence of ensemble and time averages and the stationarity.

Distribution of TAMSD.—Due to the scale-free nature of
the distribution c ðtÞ of waiting times all TAs of physical

observables, e.g., #2, remain random quantities, albeit with
a limiting distribution $ð%Þ for the dimensionless ratio

% ¼ #2=h#2i [9,17,41]. As contributions to TAs of the
form (1) occur at time instants when the particle performs

a jump, we expect that in the sense of distributions both #2

and na should be equivalent, #2 ¼d cna, for some nonran-
dom, positive c. In other words,

% ¼ #2=h#2i¼d naðta; TÞ=hnaðta; TÞi; (16)

for$ & T. We may thus deduce the statistics directly from
the underlying counting process. In the Supplemental
Material [37] we provide numerical evidence for this
argument.

The distribution$ð%Þ for ta ¼ 0 is related to a one-sided
stable law [13]. For ta ( T, Eqs. (16), (4), and (6), in the
limit $ & T yield

$ð%Þ ' ½1%m!ðT=taÞ*#ð%Þ þm!ðT=taÞ#ð2% !Þ

+ ðT=taÞ1%!

#ð!Þ H1;0
1;1

!
%
ðT=taÞ1%!

#ð!Þ

""""""""
ð2% 2!;!Þ
ð0; 1Þ

#
: (17)

The probability 1%m!ðT=taÞ for not moving during the
measurement (% ¼ 0) approaches one as ’ ðT=taÞ1%!.
Figure 2 shows excellent agreement of Eq. (17) with
simulations and demonstrates the qualitative changes in
the probability density with growing age of the process.

Deviations from ergodic behavior are quantified by the

ergodicity breaking parameter, EB ¼ h#22i=h#2i2 % 1,
which is zero for an ergodic processs. Its magnitude

drastically depends on whether we focus on the mobile
population or not. For the full ensemble we find

EB ¼ 2!
Bð½1þ ta=T*%1; 1þ !;!Þ

½1% ð1þ T=taÞ%!*2 % 1; (18)

while for the mobile fraction EBm ¼ m!ðT=taÞEB%
ð1%m!ðT=taÞÞ. If ta ¼ 0, then 0 , EB ¼ EBm , 1
reduces to the bounded result of Ref. [13]. In contrast, in the
strongly aged regime ta ( T, EB diverges as EB'
2ðta=TÞ1%!=½!ð1þ !Þ*, indicating huge fluctuations. This
is mainly due to the fundamentally different dynamics of
the two populations; concentrating solely on the mobile
group, we find that 0< EBm , 1 stays finite in the limit
ta=T ! 1. Figure 3 shows the behavior of EB.
Conclusions.—We investigated the effects of aging on

TAs of physical observables. Previous calculations of TAs
tacitly neglect the fact that often the preparation of the
system and start of the measurement do not coincide.
While this does not cause any problems for ergodic sys-
tems with rapid memory loss of the initial conditions, in
general this cannot be taken for granted in anomalous
diffusion processes. Here we showed for the case of
CTRW dynamics with scale-free waiting times that TAs
of arbitrary physical observables carry the common
factor "!. This factor is universal in the sense that it
only depends on the process age ta and the measurement
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FIG. 2 (color online). Scatter density $ð%Þ for different ! and
m!. Lines: Eq. (7) from Ref. [13] (Left) and Eq. (17) (Right).
Symbols: Simulations of free CTRW. Note that the area under
the curves for the aged process (Right) is not unity, since the
fraction 1%m! of immobile events is not shown. We used &2 ¼
" ¼ 1 arb: units, $ ¼ 100, T ¼ 2+ 106, and ta ¼ 1:75+ 107.
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FIG. 3 (color online). Ergodicity breaking parameter (18) as
function of ! (Left) and ta=T (Right). Note that the nonergodic
fluctuations become larger with increasing ta.
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EB = 2α
B([1 + ta/T ]−1; 1 + α, α)

[1− (1 + T/ta)−α]2
− 1.
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For time averages noise matters

121916-9 Jeon, Barkai, and Metzler J. Chem. Phys. 139, 121916 (2013)

FIG. 6. Results of the p-variation test for the nCTRW process with Brownian noise ηzB(t) for noise strengths η = 0.001, η = 0.01, and η = 0.1. The upper
(lower) two rows are for α = 0.5 and 0.8. In all figures, the p sums are plotted with the same color code: n = 8 (black), 9 (red), 10 (green), 11 (blue), 12 (cyan),
13 (violet), and 14 (yellow).

A. Ensemble-averaged mean squared displacement

In Fig. 8, we plot the ensemble averaged MSD ⟨x2(t)⟩ of
the nCTRW process with Ornstein-Uhlenbeck noise for dif-
ferent noise strengths η. We note that, regardless of the in-
tensity η, the ensemble averaged MSDs follow the scaling
law ∼tα of the noise-free CTRW process xα(t), in particu-

lar, at long times. Moreover, all MSD curves at different η

almost collapse onto each other, although small differences
are discernible at short times. These results suggest that, in
contrast to the Brownian noise case discussed in Sec. IV,
the Ornstein-Uhlenbeck noise does not critically interfere
with the diffusive behavior of the noise-free CTRW motion,
as expected. To obtain a quantitative understanding of these

FIG. 7. Sample trajectories of the nCTRW process x(t) with Ornstein-Uhlenbeck noise for several values of the noise strength η and anomalous diffusion
exponents (a) α = 0.5 and (b) α = 0.8. In contrast to the Brownian noise case of Fig. 2, however, the approximately constant amplitude of the superimposed
noise is characteristic for the Ornstein-Uhlenbeck process.

Downloaded 23 Aug 2013 to 132.70.33.140. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

〈r2〉 ∼ tα + const

〈δ2〉 ∼ ∆/t1−α + const
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Future work

So far over damped limit, no velocity.

Scale invariant velocity correlation functions 〈v(t)v(t+τ)〉 we generalize
the Green-Kubo relation (simple).

Let 〈r2〉 ∼ tα and 〈v2〉 ∼ tβ.

Then 〈δ2〉 ∼ tβ∆α−β.

Aging exponent has a clear physical meaning, but is it physical?

Eli Barkai, Bar-Ilan Univ.



Green-Kubo Relation

• Green-Kubo relation between diffusion constant and velocity correlation
function

〈x2〉 = 2Dt

D =

∫ ∞
0

dτ〈v(t+ τ)v(t)〉.

• In our case D →∞ or D → 0.

• What then?
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Scaling Green-Kubo relation

• For non stationary processes, exhibiting aging,

〈v(t+ τ)v(t)〉 = Ctα−2
φ

(
τ

t

)
.

• Then 〈x2(t)〉 = 2Dαt
α with

Dα =
C
α

∫ ∞
0

ds
φ(s)

(1 + s)α
.

• This relation is valid for a process starting at t = 0.

• Applications: blinking quantum dots, atoms in optical lattices, active transport,
coupled CTRWs.

Dechant, Lutz, Kessler Barkai PRX (2014)
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Scaling Green-Kubo for the time average

〈δ2〉 ∼ 2c1C

(β + 1)(α− β − 1)(α− β)
tβ∆α−β.

Here only small argument behavior of the correlation function enters.
Unlike the ensemble average.

φEA

(τ
t

)
∼ c1

(τ
t

)−2+α−β
.

The measurement of time average MSD does not provide information on
the ensemble average diffusion constant Dα (CTRW is an exception!).
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Summary

• In disordered system diffusivity remains random and depends on the
measurement protocol.

• In equilibrium, for closed system, fluctuations of quenched system far exceed
the annealed case.

• Aging effect is experimentally observed, δ2 decreases with measurement time
t and increases with lag time ∆.

• For quenched systems the measurement time ageing is replaced with system
size reduction of the diffusivity.
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Ergodicity in equilibrium

〈O〉 =
∫
O(x)µ(dx) ≡ O = limt→∞

1
t

∫ t
0
O(t′)dt′

For example x = 〈x〉.
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Weak Ergodicity Breaking in CTRW

O =
∑
x

pxOx

px = tx/t the occupation fraction
Ox value of the observable in state x.

ergodicity px → P eqx .

fα
(
O
)

= −1
π limε→0 Im

∑L
x=1 P

eq
x (O−Ox+iε)

α−1∑L
x=1 P

eq
x (O−Ox+iε)

α .

Ergodicity if α→ 1
fα=1

(
O
)

= δ
(
O − 〈O〉

)
.

Rebenshtok, Barkai PRL 99 210601 (2007)
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Diffusion maps
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Fractional Fokker Planck vs Fractional Brownian Motion

• Fractional Fokker Planck Equation (non-ergodic, non stationary)

∂α

∂tα
P (x, t) = LfpP (x, t)

Physical picture: trap model, CTRW.

• Fractional Langevin equation (ergodic, stationary)

mẍ+mγa
∂α−1

∂tα−1
ẋ(t) + U

′
(x) = Fnoise(t)

Physical picture: single file diffusion, certain polymer models.

• Deng, Barkai PRE 79 011112 (2009).

• Metzler, Barkai, Klafter PRL 82, 3563 (1999).
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And what about active super diffusion?

• Certain active processes in cell exhibit super diffusion δ2 ∼ ∆ξ and ξ > 1.

• Lévy walks and fractional Brownian motions are models of such behaviour.

• The time average MSD remains random when average sojourn time diverges.
Froemberg EB PRE 87 030104(R) (2013).
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