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Brownian yet non-Gaussian Random Walk:

from Superstatistics to Subordination of
Diffusing Diffusivities

Aleksei Chechkin
Institute for Physics and Astronomy, University of Potsdam, and
Akhiezer Institute for Theoretical Physics, National Science Center
“Kharkov Istitute of Physics and Technology”, Kharkov
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Reminder
e Brownian and Gaussian
e Anomalous, non-Brownian and non-Gaussian

e Variable diffusion processes

Brownian yet non-Gaussian

—> superstatistical Brownian motion
—> diffusing diffusivity model by Chubynsky and Slater (2014)

—> minimal diffusing diffusivity model (2017)

e Subordination concept

e Superstatistical behavior as a short time limit of subordination approach

e Solution of the bivariate Fokker-Planck equation via subordination

approach

A. Chechkin, F. Seno, R. Metzler, and |I.M. Sokolov, PRX 7, 021002 (2017)



Reminder. Brownian motion: massive particle in a heat
bath (Langevin, 190R)

dU (x dx
¢ | Langevin SDE m ” = — d( )—ymv+,/2DV§(t) , E: V
X
Stokes’ friction _ 67 R <§(t)§(t )> :5(t_t) &(f): Gaussian
coefficient 7_777 \ g
v =ymkgT | (1 FoT
dx 1 dU koT
d d ax 1 ey _kp
¢ ggg;o?(?r‘npaetion dt o my dx T 2Dx§(t) Dx - my

D, —>D, m=1, y=1

2
Fokker- of 0(dU 0
P?an:I:eq ézﬁx(dxfj—l_l)aszf




Reminder. Normal Brownian diffusion

No external force, U =0

Fokker-Planck eq > Diffusion eq

of of f(x,0)=6(x)

~- 0 < X<+

O ox2
: ) Hallmarks of normal Brownian
fe0)= exp X L diffusion (Einstein, Smoluchowsky)
47Dt 4Dt /
. N I
Mean squared displacement : <x2> = j xzf(x,t)dx =2 Dt di?f[g;n
law

—00

¢ Wiener process: increments are (1) stationary, (2) Gaussian, (3) uncorrelated



3 different sources of anomaly in the Langevin

description <172>oct”  ul
» L dx a’U t): Gaussian : :
Normal” : +2D&6 (1) s6(f) <§G(t)§G(t )> =5(t—t )l
dt dx uncorrelated
dx dU L=Lévy
=——++2D
dt dx o1 (?) & (f): non-Gaussian,
uncorrelated
H = Hurst
dx dU
i +V2DSy ()| £(0: Gaussian,
t dx
strongly correlated
dx dU
3 E —d—+\/2D(X f)gG(l‘)

&s(f): Gaussian, uncorrelated



. .- . Motivation: Brownian yet non-
Random diffusivity Gaussian diffusion (S. Granick’s

group 2009, 2012)

A new class of diffusive dynamics has

recently been reported: %
<172(t)>: [ F2fF0dF=2dDr | d=12,3

—Q0

° diffusion is normal

e PDF is non-Gaussian, typically 7
characterized by a distinct exponential P(F,t) = exp [——j , A=+IDt
shape (Laplace distribution) A7)

Peculiarities of Brownian diffusion in soft materials where the environment fluctuates
slowly on broad timescales (Granick’s group, PNAS2009, Nat Mat2012)

e Dynamics of tracer particles in colloidal hard-sphere suspensions (Kegel and
Blaaderen, Science2000)

e Passive tracers in suspensions of eukaryotic swimmers, the alga
Chlamydomonas reinhardtii (Goldstein et al., PRL2009)

Confined diffusion of nanoparticles suspended in polymer solutions (Xue et al. JPCL 2016)

The motion of individuals in heterogeneous populations, such as nematodes (~mm) in
heterogeneous environments (agar) (Hapca et al., RSIF2009)

(For a more comprehensive list see Chechkin et al., PRX 2017)



Anomalous yet Brownian When Brownian diffusion is
Bo Wang=, Stephen M. Anthonyt, Sung Chul Baes, and Steve Granickab.cd.1 n Ot G a u SS i a n

15160-15164 PMAS | September8, 2008 | wol 106 | no. 36
Bo Wang, James Kuo, Sung Chul Bae and Steve Granick

. . ) L NATURE MATERIALS | VOL 11 | JUNE 2012 | www.nature.com/naturematerials
Diffusion of colloids on phospholipid tubes

Colloidal beads in entangled actin suspensions
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DLPC bilayers Is plotted logarithmically agalnst inear displacement normal-
Ized by particle dizmeter for several representative values of time step: 60 ms
{squaras), 0.5 5 {drcles), 3 s (orosses), and 5.8 s (triangles).

log G (r.t)/G (0.1)




Granick et al.: Slow environmental relaxation is common in
soft matter, as exemplified in experiments by colloidal
particles diffusing in an environment of biopolymer filaments
and phospholipid tube assemblies

b, The distributions of displacements of objects
diffusing a distance rin a certain time tin a
slowly relaxing environment can be described
with a non-Gaussian probability distribution
function, G_(r,t), which can be decomposed into
a set of elementary diffusive Gaussian processes
(white curves).

¢, Environmental fluctuations can
span a wide range of times (or frequencies), as
illustrated by the woodcut print The Great Wave
from the Japanese artist Katsushika Hokusai.

(from Wang, Kuo, Bae & Granick, Nat. Mat. 2012)
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Anomalous diffusion of heterogeneous
populations characterized by normal
diffusion at the individual level

Simona Hapca*, John W. Crawford and Iain M. Young

SIMBIOS Centre, University of Abertay Dundee, Dundee DD1 1HG, UK

Slug pest Deroceras reticulatum is a common agricultural and
horticultural pest and is one of the host species effected by
Phasmarhabditis hermaphrodita
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10x magnification photo of Adult hermaphroditic female Parasitic
nematode (Phasmarhabditis hermaphrodita). 1 Eye Piece Unit = 9.5um

Deroceras reticulatum infected with slug parasitic roundworm

Phasmarhabditis hermaphrodita.

Direct observations of nematode movement on agar plates
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suggested a large variation in individual behavior among the

Diffusion is normal, but:

v—1

2]
PDF of the diffusion
- coefficient

-

0

01 02 03 04 05 06 0.7 08 09



How can this combination of normal, Brownian scaling of the MSD be
reconciled with the existence of a non-Gaussian probability density
function?

Superstatistical Brownian Motion

¢| Based on two statistical levels describing, respectively, the fast jiggly
dynamics of the Brownian particle and the slow environmental fluctuations
with spatially local patches of given diffusivity (Beck, 2001; Beck and
Cohen, 2003; Beck, 2006)

¢ In math literature: compounding (Dubey, 1970)

e_x2 /(4D¢) © Wanget al.,

[t D)y==—pem = [ [ f(x.t| D)p(DYAD| 20082012

1 D | x|

Take p(D):D_*eXp[_D_*j f(x t)_ \/—CXp£ \/—]

_ B Dv—l _2 f(x,t) ~ exp _M]
Hapcaetal.,2009: p(D)= 5 exp[ ] \/Et

Y T (v) D,




Similar phenomena for the case of anomalous diffusion

A.J. Spakowitz et al., 2017 RNA-protein particles in cellular cytoplasm exhibit
subdiffusive behavior that is viscoelastic in its origin

2 i o
<:r (f)> - i-a 10 %‘ ‘ ‘ A‘ Ev(:m’:{l—l5ls‘
2 N & £ oevetnenais-a7ss
Gale | ;) = . exp i FBM 107} R, o f
el T JirDate T\ 4Dt >,
o) .
E_-: » A‘\‘
Diffusivities exhibit exponential 1 I, A "0, 0
o ) Bl )= exp | — &8
distribution 3o 5 A
_ o L R N A AN
Displacements exhibit a b/
. . . b : —
Laplace distribution = o [ g e
o0 Té Té 10”
P(z,t) = / pp(D)G(z.t|D)dD Fy ;o
: D 107
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PHYSICAL REVIEW X 6, 021006 (2016)

Protein Crowding in Lipid Bilayers Gives Rise to Non-Gaussian Anomalous
Lateral Diffusion of Phospholipids and Proteins

Jae-Hyung Jeon,'* Matti Javanainen,”” Hector Martinez-Seara,™* Ralf Metzler,” and llpo Vattulainen™

b

We observe that correlated Gaussian processes of the fractional Langevin equation type, identified
as the stochastic mechanism behind lipid motion in noncrowded bilayer, no longer adequately describe
the lipid and protein motion in crowded but otherwise identical membranes. It turns out that protein
crowding gives rise to a multifractal, non-Gaussian, and spatiotemporally heterogeneous anomalous
lateral diffusion on time scales from nanoseconds to, at least, tens of microseconds. Our investigation
strongly suggests that the macromolecular complexity and spatiotemporal membrane heterogeneity in
cellularmembranes play critical roles in determining the stochastic nature of the lateral diffusion and,
consequently, the associated dynamic phenomena within membranes.

Superstatistical approach again (Ch, Seno, Metzler, Sokolov, 2016)

1 r? 1]
VanDgte T ( 4Datﬂ')

(D) = 1 _[Ba]”
Po(De) = v ri7mpr P\ | D2 | -

Galz t Dy ) =

||

Py(xz,t) ~exp | —c [(

4Dafrxj1;’2

] 26/ (14K)

—

P(z,t) = /ﬂx po(D)G(z, t|D)dD

But: unable to describe a transition to Gaussian behavior at long times




The crossover from non-Gaussian to Gaussian can not be explained by

superstatistical approach

P(z,t) = /-x pp(D)G(z,t|D)dD (1) G(z,t|D) =
0

T
Inverse Fourier ~ 1(#:1) = 5= * & “pp(k°t)dk
transform of (3) : ]

1 sl
= ol f e B (k%) dr
ML

—

The right hand side of (4)
defines a scaling function F :

v A Dt

P(z,t) = o 2P(c_, e

2
exp (—m) (2)

Fourier transforming (1): P(k.t) = f pD(D)e—mzde = pp(s = k?t) Laplace transform of
0

pp(D) at s = k2t

(4)

(5)

The form F as function of the similarity variable {is an invariant

(3)



Important step forward:
Chubynsky-Slater bi-Langevin model (2014): diffusing diffusivity

the very idea was first introduced in financial math (“stochastic volatility”)

dx D(t): Brownian particle in a gravitational field
EZ\/2D(1) (1) .
0 0 0
— p(D,t)=g——p(D,) +———p(D,1)  FPE
d_D:_ngGW) ot oD 2 oD
. 2
dt aRtegezctcl)ng boundary s, y=0 J(D,t):_gp(D’t)_%a%p(D’t)

Stationary solution of the
FPE (barometric formula) :

1 D o’
D)=—exp| —— Dy=——
pSl‘() D, p( D*j 2g

1

Probability density G

Then, the superstatistical approach:

Langevin simulations

10 Q N\ 50 I 10
( ) OJ?dD (D) e_xz/(4Dt) 1 | X ‘ \ Displacement .x A\
p(x,t)= p = exp| — ——= _
) st N4r Dt 2Dyt Dyt <x2 (t)> _ ﬁD*t Exponential Gaussian at
4

at short times long times

BUT: Langevin simulations give exponential PDF at short times (covered by superstatistical
approach) and Gaussian PDF at long times  TRANSITION TIME 222



Minimal Langevin model for diffusing diffusivities (Chechkin et al. 2017)

dF . ]
d—';:«/zD(t)ﬁ(t) (ED)=(ii©O)=0 . (&@)E1))=0;0(ti~1r), i,j=xp.z

52 x(0)=0
D()=Y"(?) () (12)) =016 (1 ~t2)  Lm=12,...,m
E— ¥(0) = yo
dY Y . _ . .
= —?+ on(t) Y(t): n-dim. Ornstein — Uhlenbeck process
Reasonings:

1. On the single trajectory level the particle motion is modeled with a random diffusivity D(t).
2. Taking D(t) as the square of the auxiliary variable Y (t) guarantees the non-negativity of D(t) .
Why OU ?
3. Makes sure that the diffusivity dynamics is stationary with a given correlation time .

4. Ensuing PDF pp(D) has exponential tails thus guaranteeing the emergence of the Laplace-
like PDF P(r,t) at short times.

5. The above set of equations also allows for an analytical solution !

6. The number of modes n is essentially a free parameter of the model — additional
flexibility



Minimal Langevin model in dimensionless units ¢ —>t/t 7 —7/(or)

dr = _
“-=\2DOEW)|  (E0)=()=0 . (50)E 1) =55 -n). ij=xy.z

52 x(0)=0
D()=Y"(?) () (12)) =016 (1 ~t2)  Lm=12,...,m
7 y(0) =y
— = —Y +1j(¢) y(t): n-dim. Ornstein — Uhlenbeck process
E I
Solutionof QU :  Y(8) = Yoe '+ f (et (Y(t1)Y (t2)) ~ 5e 127"
) JO
fl—.i F - d I. ID} ST 1 .___1:-"’-"
Stationary diffusivity distribution pp(D) = [ f(Y)8 (D-Y?*)dY
‘ _D -
< n=1
NETE _ .
o D Exponential dependence is
ppP)=q €=,  n=2 dominating
2ND _p -
\/; 9




Digression. Subordination concept in probability theory
(Bochner, 1949, Feller, vol.ll)

e Beautiful mathematical theory widely used e.g., in financial mathematics

“Random time
x(7) Parent process x with PDF G(x,7) evolving in change”

operational random time T

7(t)  Directing process, or subordinator, with PDF T{(z,t):
operational time evolving in physical time t (also: path variable t)

x(r (t)) Subordinated process controlled by subordinator z(f)

Integral formula for %
subordination (Feller, vol.ll) p(x,t) = fdf G(x,7)T(z,1)
0
The probability for a walker to arrive at position x at time t CTRW: random number
equals the probability of being at t on the path at time t, of steps n(t) <

multiplied by the probability of being at position x for this path

length t, summed over all path lengths H. Fogedby (1994) <> operational time (f)



Solution of the minimal model in the form of subordination

integral

Z—’}\/zD(r)E(t) (a)

d
&

Langevin eq.(a) in the
subordinated form

= Parent process r evolving in
r(7) P J

D) =Y*()

(b)

TF““ t) = D(t)V*P(r,t).

0

—

dY

" -Y +7j(t),  (c)

& J2E (@)
dr

dr
—=D(¢
7 (¢)

operational random time T

G(r,7)=

7(t)  Directing process, or subordinator, with PDF T{(z,t):

operational time evolving in physical time t (also: path variable t)

Integral formula for
subordination :

P(F.1) = [ dr G(F
0

aT)Tn(Ta 1)

|

1 r
ex
Narnr P L

4t

2

A A
r(t) = j dt'D(t') = j dt' Y2 (t)

0

—_—

I

—_—

BUT:
What is

T (z) 227



Distribution of the integrated square of the Ornstein-Uhlenbeck
process (T. Dankel, SIAM J. Appl. Math.1991).

et/2

Laplace transform of T (z,t) Ty (s,0) = -

1[ 1+2s +71
2 V1+2s

1/2
]sinh(t 1+25)+cosh(t 1+2s)}

o0

Integral formula for o . Langevin eq.(a) in the
subordination again: |F(1) = d7G(F, )T, (7,1) subgrdinated(fo)rm

0
Fourier
transform of P » 0 5
via Laplace P(k,t) = [ dr Gk, )T, (z.t) = [dre™ 7T, (z.,0) =T, (s =k>.1)
transform of T : 0 0

. . — t {
For n-dimensional OU D(t):Yz(t) = [Y?{_tw = [{1’12(f’}+}'?f{t’}—.~...+1”,f(f’)}d#’
Jo

J0

Bl dy = exp(ﬂfﬁ)/[% (er 1125) /

n/2

/ x sinh (hf 1425} 4+ cosh (t\fl + 25)




Brownian mean squared displacement and leptokurtic behavior

(isotropic case)

(r2(t)) = —Vﬁﬁ(k,tj‘k:[}, e 10 (kd—li)_
(1) = VEPKk1)| . ¢ ROk " ok
P(k,t) = Am e_;“gTTn(’rg tydr = 1 — k* /ﬂm'rTﬂ(*r?t)df —|—%4 DOG 72T, (T, t)dT + ...
e T, (s,
(r3(t)) = 2d /ﬂ rTo(r,t)dr = 2d(r) = —2d it 3(5 t) -
(r*(t)) = 4d(2 + d) f T P2 T (r, f)dr = 4d(2 + d)(r?) = 4d(d+2) 321;’*(;’”
0 2 s=0
(r*(t)) = dnt = 2d(D)«t,  where (Y2(t)) = (D)ot = 5.
1 —eg 2t
(14()) = 4d(2 + d)(D) [— C bt (D)ut?



Brownian MSD and leptokurtic behavior -2

In dimensional units  (r*(t)) = dng?rt = 2d(D) D,t. linearin tfor all times
parameters of OU " E
processes for diff diff 5 léf
1 B
i ) il 7 - . . . .
Kurtosis K = M -y
: . 9. g=1
h im <T. ] 2 1 -
Sortt_ est<Tt Rm(1+—)(1+ ): g J—9
h=d d (D)st 95/9, d =3
Longtimest>T.  Ggyssian value TR e
does not depend on n °I
7 -
9 7 d—=1 .
: 2 5t
K ~ (1 e n E) = 2. == £ -
5/3, d=3 <8
4 -
% 94 il I
K S ]_ + L —l— . ) w L L L . L
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oC 1/t t



& Solution of the Minimal Model at short times, t<<1, d=n @

d=1
15 cos(kx) 1 X p _ 1 BEd
P(x,t)y=——| dk = Ky (—) (x,7) CXp
P T
t
]_ r 1} | \ s :
d=2 P(r,t)=—Kog| — ).
0= 5% (72) .
d=3 =5 L K & ) 0.01
= et = SWCYEySRALL E
¢ Solution of the Minimal Model at long times
t>>1, d=n (2t ——m
—p 1 i ) ‘.\ i
r.t) ~ ex —_— . B F.
, J (4W<D}stt}nX2 5 4{D}5tt z T
Exponential at = Gaussian at long s | :
short times times -




¢ Relation to superstatistical Brownian motion
P,(r,t) = /m Pt (D)G(r, t|D)dD D(t)=Y?(t)
d=1 D D, = o1
Blat) = Q’r\/— D ( DD* 4it) Y = = %D,,tKD ( |E|*t)
d=2 i, ,
Fo(r,t) = 4';r}9*t /D %EXp (_ DD* N 4?:Dt) g = Q?T (
d=3

Py(r,t) - - ( BT Nan = (
ST 24D, 1)37 L BTN By ADE) M*(D t)3/2

9

Superstatistics is valid at times less than the correlation time
of the random diffusivity

Perfect coincidence:
superstatistics =

subordination for any d and n at short times!




t < t : diffusion coefficient does not
change considerably, and the
subordination scheme describes an
ensemble of particles, each diffusing
with its own diffusion coefficient.

This mimics a spatially
inhomogeneous situation, when the
local diffusion coefficient is random,
but stays constant within confined
spatial domain = ensemble of
particles moving in different domains
exhibits a superstatistical behavior .

t > 1 : the particle goes away from the
local patch of diffusivity D thus violating
the assumption of the superstatistical
approach .

The short time regime of the subordination formalism leads directly to the
superstatistical result.

Pix.t)

0.1 f

001 £

FIG. 5: Probability density function P(z,t) for d = n = 1
from simulations of the Langevin equations (20) for three dif-
ferent times. Comparison with Gaussian distribution (79)
demonstrates the strongly non-Gaussian behavior at short
times and the almost fully Gaussian shape at longer times.

e The subordination approach delivers an approximation to a spatially disordered

situation and adequately describes the transition to a Gaussian behavior.



¢ Fokker-Planck equation and relation to subordination approach

& _ pD0ew)

dr
D) =Y>(?)
¥ a0

dt

%f(x, Y,0)= Ly f(r,Y,0)+ Y2

Marginal PDF :  p(x,f) = f dy f(x,

o0
Ansatz: |f(x,Y.t) = [ drG(x,1)q(z.Y t)|where PDF q(z.Y,?) — =)
0 -
@ dr o)
FPE for | O 2 0 — =Y
—q(x,Y,t)=Lyqg(x,Y,t)-Y " —q(x,Y,t dt
Q(T,Y,t) ot Q( ) Yq( ) o1 Q( ) o
: 00 o0
Marginal | p(x,0) = [de T(r.)G(x,7)| where |T(z.0)= [ dY q(z.Y.1)
PDF :
0 —00
o0 2
Verification:  |L520 — [ar6en) S g v = Ly (e Yy +Y2 2o p v
ot 0 ot Ox

Bivariate FPE :

;—2f(x,Y,t)

ok




¢

¢

The subordination formulation of the diffusing diffusivity problem —
1st main result

The full consistency in the short time limit between the
subordination approach and superstatistics — 2" main result

The explicit derivation for the crossover to a Gaussian behavior — 3
main result

The connection of the bivariate Fokker-Planck equation for the
double Langevin system with the subordination approach — 4t
main result

The model can be calibrated with respect to two parameters,

diffusivity correlation time T and the amplitude o, thus making
this model useful for experimentalists

Subordination: a promising tool to go beyond the Brownian yet
non-Gaussian process and consider anomalous diffusion



¢

From a practical viewpoint:

Why all this matters ? As the non-Gaussian character mostly appears in
the tails of the distribution, and thus with low probability...

The answer is: this can be at the heart of the understanding of soft-
matter systems, especially in those where the rare events dominate
the long-time dynamics

Relaxation, transport and reaction in complex media

Triggered actions in which diffusion, in a first step of a
process, sets off a cascade of subsequent process, such
as signalling in biology or kinetically controlled processes

The emerging field of active matter with internally driven
systems that sample rare events more frequently

Systems with first passage processes — such as targeting,
translocation, triggering, criticality,... - rare fluctuations may
dominate the system’s dynamics and induce relevant transitions

Certainly, Fickian yet non-Gaussian diffusion will lead us

to the discovery of unexpected phenomena



Many thanks to my collaborators:

Flavio Seno (Padova), Ralf Metzler (Potsdam), and Igor M. Sokolov (Berlin)

Different approaches, but similar results in
- Jain and Sebastian (2017)

-Tyagi and Cherail (2017)

- Y. Lanoiselée and D. Grebenkov (2017)

Thank you for attention !



