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 Superstatistical behavior as a short time limit of subordination approach
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Reminder.  Brownian motion: massive particle in a heat 
bath (Langevin, 1908)





2

2
f dU ff D
t x dx x
         

( ) ( ) ( )t t t t    

Fokker-
Planck eq

v
( ) + 2 ( ) ,d dU x dxm m D t

dt dx dt
    

v v v

overdamped 
approximation

1 2 ( )x
dx dU D t
dt m dx




   B
x

k TD
m



v BD mk T

, 1, 1xD D m   

(t): Gaussian
Stokes’ friction 
coefficient

6 R
m
 

Langevin SDE

FDT
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f fD
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
 

21( , ) exp
44
xf x t
DtDt

 
   

 

2 2 ( , ) 2x x f x t dx Dt




 
Normal 
diffusion 
law

Wiener process: increments are (1) stationary, (2) Gaussian, (3) uncorrelated

U = 0No external force,

Fokker-Planck  eq Diffusion  eq

( ,0) ( )f x x
-  < x < + 

Mean squared displacement  :  

Reminder.  Normal Brownian diffusion

Hallmarks of normal Brownian 
diffusion  (Einstein, Smoluchowsky)



3 different sources of anomaly in the Langevin 
description

Lévy flights

Fractional  motions 

Variable diffusion processes

2 ( )G
dx dU D t
dt dx

   ( ) ( ) ( )G Gt t t t    
G(t): Gaussian

uncorrelated

2 ( , ) ( )G
dx dU D x t t
dt dx

  

2 ( )H
dx dU D t
dt dx

  

2 ( )L
dx dU D t
dt dx

  

G(t): Gaussian, uncorrelated

L(t): non-Gaussian, 
uncorrelated

H(t): Gaussian, 
strongly correlated

1

2

3

L  Lévy

H  Hurst

“Normal” :

2 , 1t  
r



Random diffusivity
A new class of diffusive dynamics has 
recently been reported:

2 2( ) ( , ) 2 , 1,2,3t f t d dDt d




  
   r r r r

diffusion is normal

PDF is non-Gaussian, typically 
characterized by a distinct exponential 
shape (Laplace distribution)

 | |( , ) exp ,
( )

P t Dt
t




 
   

 

 rr

The motion of individuals in heterogeneous populations, such as nematodes (~mm) in 
heterogeneous environments (agar) (Hapca et al., RSIF2009)

(For a more comprehensive list see Chechkin et al., PRX 2017)







Motivation: Brownian yet non-
Gaussian diffusion (S. Granick’s 
group 2009, 2012)

Peculiarities of Brownian diffusion in soft materials where the environment fluctuates 
slowly on broad timescales (Granick’s group, PNAS2009, Nat Mat2012)

Passive tracers in suspensions of eukaryotic swimmers, the alga
Chlamydomonas reinhardtii (Goldstein et al., PRL2009) 

Dynamics of tracer particles in colloidal hard-sphere suspensions (Kegel and 
Blaaderen, Science2000)



Confined diffusion of nanoparticles suspended in polymer solutions (Xue et al. JPCL 2016)



Diffusion of colloids on phospholipid tubes

Colloidal beads in entangled actin suspensions

Exponential PDF at 
short times, Gaussian 
at longer times



Granick et al.: Slow environmental relaxation is common in 
soft matter, as exemplified in experiments by colloidal 
particles diffusing in an environment of biopolymer filaments 
and phospholipid tube assemblies 

(from Wang, Kuo, Bae & Granick, Nat. Mat. 2012) 



10x magnification photo of Adult hermaphroditic female Parasitic 
nematode (Phasmarhabditis hermaphrodita). 1 Eye Piece Unit = 9.5μm

Slug pest Deroceras reticulatum is a common agricultural and 
horticultural pest and is one of the host species effected by 
Phasmarhabditis hermaphrodita

Deroceras reticulatum infected with slug parasitic roundworm

Phasmarhabditis hermaphrodita.
Direct observations of nematode movement on agar plates 
suggested a large variation in individual behavior among the 
population

PDF of the diffusion 
coefficient

Diffusion is normal, but:1
( ) exp

( )
D Dp D

DD



 





 
  

  

0.57, 0.21D  



How can this combination of normal, Brownian scaling of the MSD  be  
reconciled with the existence of a non-Gaussian probability density 
function?

Superstatistical Brownian Motion

?

Based on two statistical levels describing, respectively, the fast jiggly
dynamics of the Brownian particle and the slow environmental fluctuations
with spatially local patches of given diffusivity (Beck, 2001; Beck and
Cohen, 2003; Beck, 2006)



In math literature: compounding (Dubey, 1970)
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Wang et al., 
2009, 2012
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Hapca et al., 2009 : 
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Similar phenomena for the case of anomalous diffusion

Displacements exhibit a
Laplace distribution 

RNA-protein particles in cellular cytoplasm exhibit 
subdiffusive behavior that is viscoelastic in its origin 

A.J. Spakowitz et al., 2017 

FBM

Diffusivities exhibit exponential 
distribution 



We observe that correlated Gaussian processes of the fractional Langevin equation type, identified 
as the stochastic mechanism behind lipid motion in noncrowded bilayer, no longer adequately describe 
the lipid and protein motion in crowded but otherwise identical membranes. It turns out that protein 
crowding gives rise to a multifractal, non-Gaussian, and spatiotemporally heterogeneous anomalous
lateral diffusion on time scales from nanoseconds to, at least, tens of microseconds. Our investigation 
strongly suggests that the macromolecular complexity and spatiotemporal membrane heterogeneity in 
cellular membranes play critical roles in determining the stochastic nature of the lateral diffusion and, 
consequently, the associated dynamic phenomena within membranes.

But: unable to describe a transition to Gaussian behavior at long times 

Superstatistical approach again (Ch, Seno, Metzler, Sokolov, 2016) 



The crossover from non-Gaussian to Gaussian can not be explained by 
superstatistical approach

(1) (2)

Fourier transforming (1): Laplace transform of 
pD(D) at s = k2t

(3)

Inverse Fourier 
transform of (3) :

(4)

The right hand side of (4) 
defines a scaling function F :

(5)

The form F as function of the similarity variable  is an invariant



Chubynsky-Slater  bi-Langevin model (2014): diffusing diffusivity

2 ( ) ( )dx D t t
dt



( )dD g t
dt

   

2 2

2( , ) ( , ) ( , )
2

p D t g p D t p D t
t D D

  
 

  

( , 0) 0J D t  
2

( , ) ( , ) ( , )
2

J D t g p D t p D t
D

 
  



1( ) expst
Dp D

D D 

 
  

 

2

2
D

g


 

 2 / 4

0

1 | |( , ) ( ) exp
4 2

x Dt

st
e xp x t dD p D

Dt D t D t

 

 

 
    

 
 2 ( )

4
x t D t
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Important step forward:

D(t): Brownian particle in a gravitational field

FPE

Reflecting boundary 
at D = 0

Stationary solution of the 
FPE (barometric formula) :

Then, the superstatistical approach:

BUT: Langevin simulations give exponential PDF at short times (covered by superstatistical 
approach) and Gaussian PDF at long times

Exponential 
at short times

Gaussian at 
long times

La
ng

ev
in

 s
im

ul
at
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ns

the very idea was first introduced in financial math (“stochastic volatility”)

TRANSITION TIME  ???



Minimal Langevin model for diffusing diffusivities  (Chechkin et al. 2017)

2 ( ) ( )d D t t
dt
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2( ) ( )D t t


Y
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(0) 0x 

Y(t):  n-dim. Ornstein – Uhlenbeck process

 1 2 1 2( ) ( ) , 1,2,...,l m l mt t t t l m n     

0(0)y y

Reasonings:
1. On the single trajectory level the particle motion is modeled with a random diffusivity D(t).

2. Taking D(t) as the square of the auxiliary variable Y(t) guarantees the non-negativity of D(t) .

Why OU ?
3. Makes sure that the diffusivity dynamics is stationary with a given correlation time .

4. Ensuing PDF pD(D) has exponential tails thus guaranteeing the emergence of the Laplace-
like PDF P(r,t) at short times.

5. The above set of equations also allows for an analytical solution !

6. The number of modes n is essentially a free parameter of the model – additional 
flexibility 



Minimal Langevin model in dimensionless units
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y(t):  n-dim. Ornstein – Uhlenbeck process
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Solution of OU :

FPE for OU :

Stationary diffusivity distribution

Exponential dependence is 
dominating



Digression. Subordination concept  in  probability  theory 

( )x 

0
( , ) ( , ) ( , )p x t d G x T t  


 

Integral formula for 
subordination  (Feller, vol.II) 

(Bochner, 1949, Feller, vol.II)

Beautiful mathematical theory widely used e.g., in financial  mathematics

Parent process x with PDF G(x,) evolving in 
operational random time 

(t) Directing process, or subordinator, with PDF T(,t):
operational time evolving in physical time t  (also: path variable  )

( ( ))x t Subordinated process controlled by subordinator (t)

The probability for a walker to arrive at position x at time t 
equals the probability of being at  on the path at time t, 
multiplied by the probability of being at position x for this path 
length , summed over all path lengths H. Fogedby (1994)

“Random time 
change”

CTRW: random number 
of steps n(t) 
 operational time (t)



Solution of the minimal model in the form of subordination 
integral
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Integral formula for 
subordination :

(a) (b) (c)

Langevin eq.(a) in the 
subordinated form 

( )r Parent process r evolving in 
operational random time 

(t) Directing process, or subordinator, with PDF T(,t):
operational time evolving in physical time t  (also: path variable  )

BUT:
What is 
Tn(,t) ???

!



Distribution of the integrated square of the Ornstein-Uhlenbeck  
process (T. Dankel, SIAM J. Appl. Math.1991).
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Integral formula for 
subordination again:

Langevin eq.(a) in the 
subordinated form 

Laplace transform of T1(,t)

Fourier 
transform of P 
via Laplace 
transform of T :

For n-dimensional OU



Brownian  mean  squared  displacement  and  leptokurtic  behavior

(isotropic case)

where



Brownian  MSD  and  leptokurtic  behavior  - 2

In dimensional units

parameters of OU
processes for diff diff

linear in t for all times

Kurtosis

Short times t <  :
n = d

Long times t > : 
does not depend on n

Gaussian value

 1/t



Solution of the Minimal Model at short times,  t << 1 ,   d = n
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20

1 cos( ) 1( , )
1

kx xP x t dk K
t t t

k
t

 

    
   

 


1 | |( , ) exp

2 | |

xP x t
tx t

  
 





d = 1
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Solution of the Minimal Model at  long times
t >> 1 ,   d = n



Exponential at 
short times 

Gaussian at long 
times 

t << 

t >> 



Relation to superstatistical Brownian motion

 Superstatistics  is valid  at times less than the correlation time 
of the random diffusivity

Perfect coincidence : 
superstatistics  subordination for any d and n at short times!

2( ) ( )D t t


Y

d = 1

d = 2

d = 3



The short time regime of the subordination formalism leads directly to the 
superstatistical result. 

t <  : diffusion coefficient does not
change considerably, and the
subordination scheme describes an
ensemble of particles, each diffusing
with its own diffusion coefficient.

This mimics a spatially
inhomogeneous situation, when the
local diffusion coefficient is random,
but stays constant within confined
spatial domain  ensemble of
particles moving in different domains
exhibits a superstatistical behavior .

t >  : the particle goes away from the 
local patch of diffusivity D thus violating 
the assumption of the superstatistical 
approach .

The subordination approach delivers an approximation to a spatially disordered
situation and adequately describes the transition to a Gaussian behavior.











Fokker-Planck equation and relation to subordination approach
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

Subordination: a promising tool to go beyond the Brownian yet 
non-Gaussian process and consider anomalous diffusion 









The full consistency in the short time limit between the 
subordination approach and superstatistics – 2nd main result

The subordination formulation of the diffusing diffusivity problem –
1st main result

The explicit derivation for the crossover to a Gaussian behavior – 3rd

main result

The connection of the bivariate Fokker-Planck equation for the 
double Langevin system with the subordination approach – 4th

main result 

The model can be calibrated with respect to two parameters, 
diffusivity correlation time  and the amplitude  , thus making 
this model useful for experimentalists







From a practical viewpoint:
Why all this matters ? As the non-Gaussian character mostly appears in 
the tails of the distribution, and thus with low probability…

The answer is: this can be at the heart of the understanding of soft-
matter systems, especially in those where the rare events dominate 
the long-time dynamics

Relaxation, transport and reaction in complex media

Triggered actions in which diffusion, in a first step of a 
process, sets off a cascade of subsequent process, such 
as signalling in biology or kinetically controlled processes 

The emerging field of active matter with internally driven 
systems that sample rare events more frequently

Systems with first passage processes – such as targeting, 
translocation, triggering, criticality,… - rare fluctuations may 
dominate the system’s dynamics and induce relevant transitions









Certainly, Fickian yet non-Gaussian diffusion will lead us

to the discovery of unexpected phenomena 
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