

Non linear transport of fluids into the tracheobronchial tree

Marcel Filoche

- Physique de la Matière Condensée, Ecole Polytechnique, CNRS, Université Paris Saclay
- Institut Mondor de Recherche Biomédicale, INSERM 955, Université Paris-Est Créteil

Joint work with

Ventilation

- B. Sapoval (Ecole Polytechnique)
- B. Mauroy, M. Florens (ENS Cachan)
- E. R. Weibel (University of Bern)
- T. Similowski, C. Strauss (Hôpital de la Pitié Salpêtrière)

Surfactant delivery

- J. B. Grotberg, C.-F. Tai, S. Holcombe, K. Raghavendran (University of Michigan)
- D. F. Willson (Virginia Commonwealth University)
- R. H. Notter (University of Rochester)
- A. Kazemi (Ecole Polytechnique & Institut Mondor de Recherche Biomédicale)

The human respiratory system

CIBA, Netter

The human respiratory system

30,000 acinus

~100 m² !

The pulmonary airway system

23 generations on average in the human lung

Gen. 0 - 15, conduction

Gen. 16 - 23, respiration

Scaling in the pulmonary airway system

Murray-Hess law

How to minimize the energy cost for a given flow rate?

W.R.Hess, 1913; C.D. Murray, 1927; T.F. Sherman, 1981

PHYSIOLOGY: C. P. RICHTER

PROC. N. A. S.

² Borelli, G. A., De motu animalium, Rome, 1681.

^a Thompson, D. W., "On Growth and Form," Camb. Univ. Press, 1917.

⁴ Henderson, L. J., "The Order of Nature," Harvard Univ. Press, 2nd ed., 1925.

⁵ Tschuewsky, J. A., Pfluger's Arch., 97, 1903 (210-288).

⁶Krogh, A., "The Anatomy and Physiology of the Capillaries," Yale Univ. Press, 1922.

Previous work on the economy of the circulation is to be found in the articles by W. R. Hess. (See especially, *Pfluger's Arch.*, 168, 1917 (439–490). In this paper he deals with the compromise between resistance to flow and the volume of a vessel. He develops equations (which can be derived from those given in the present paper), but, failing to recognize the significance of his units, the dimensions of his constants, and particularly the fact that economy is a question of *work*, he misses what seems to be the essence of the problem. The fundamental equations given in the present paper cannot be derived from those of Hess.)

214

The fractal dimension of a tree

The fractal dimension of the tracheobronchial tree

The bronchial tree is space-filling!

Benoit Mandelbrot 1977

Poiseuille flow (stationary, laminar)

Airway resistance: $R = \frac{128\eta}{\pi} \frac{L}{D^4}$

Airway volume:

$$V = \frac{\pi D^2}{4}L$$

Dead space volume

Total airway resistance

A highly constrained system

The optimal tree would correspond to *h*=2^{-1/3}, but...

Mauroy et al., Nature (2004)

Actual scaling in the tracheobronchial tree

Surfactant delivery into the human lung

Non linear transport of fluids into the pulmonary airway system

Airway and alveolar liquid lining

Cultured human tracheobronchial airway epithelia

ML-mucus layer, PCL-periciliary layer, GCgoblet cell, CC-ciliated cell, BC-basal cell, T-col-semipermeable supports

> Measurements of Airway Surface Liquid Height (Volume) by Confocal Microscopy

Authors: Robert Tarran and Brian Button

Cystic Fibrosis/Pulmonary Research and Treatment Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

e-mail: robert tarran@med.unc.edu, brian button@med.unc.edu

Alveolar liquid lining and surfactant system

Surfactant made in Type II cells

Surfactant effects on surface tension

• Alveolar Type II cells produce surfactants

• Surfactant molecules (DPPC) are in the liquid lining bulk and interface

• Surfactants at the interface reduce surface tension

Air-cycled vs. Saline-cycled Lung

Saline-cycling \rightarrow removes air-liquid interface, no surface tension

Air:less compliant, larger hysteresisSaline:more compliant, smaller hysteresis

Neonatal Respiratory Distress Syndrome

- Prematurely-born neonates have immature alveolar type II cells
- These type II cells lack sufficient surfactant-producing capacity
- Abnormally high surface tension reduces compliance
- Develop Respiratory Distress Syndrome (hyaline membrane dis.)
- ~ 1% of all birth ~ 40,000 cases annually in the US

Surfactant Replacement Therapy (SRT)

- Mortality dropped from 4,997 deaths (1980) to 861 (2005)
- SRT played a major role in this decrease of mortality
- Survivors have still high incidence of bronchopulmonary dysplasia (BPD)

Acute Respiratory Distress Syndrome (ARDS)

Ware LB, NEngl J Med 2000;342:1334

Acute Respiratory Distress Syndrome (ARDS)

- Adults with Acute Respiratory Distress Syndrome have impaired surfactant function from lung injury.
 - > Direct: aspiration, pneumonia, toxic inhalants
 - Indirect: trauma, shock, sepsis
 - > 190,000 cases in US annually
 - ~40% mortality or 75,000 deaths per year
 - SRT is not working in adults, studies have been discontinued

SRT in adults for ARDS

Gregory *et al.*, *Am J Respir Crit Care Med.* **1997** Dose Volume: **2 ml/kg-4 ml/kg** ~ 140/280 ml for 70 kg patient Surfactant Concentration: 25 mg/ml Molecular Dose: 50 mg/kg -100 mg/kg Mortality: 18.8% SRT (n=43) vs 43.8% control (n=16)

Lewis *et al.*, *Am J Respir Crit Care Med.* **1999** Dose Volume: **4 ml/kg** (40 kg sheep) Surfactant Concentration: 6.25 mg/ml, 25 mg/ml, 50 mg/ml Molecular Dose: 25 mg/kg, 100 mg/kg, 200 mg/kg Result: Improved oxygenation all concentrations, better for 25,50 mg/ml

Spragg *et al.*, *N Engl J Med.* **2004** Dose Volume: **1ml/kg** ~ 70 ml for 70 kg patient Surfactant Concentration: 50 mg/ml Molecular Dose: 50 mg/kg Mortality: no effect (n=224 SRT, n=224 control)

Spragg *et al.*, *Am J Respir Crit Care Med.* **2011** Dose Volume: **1ml/kg** ~ 70 ml for 70 kg patient Surfactant Concentration: 50 mg/ml Molecular Dose: 50 mg/kg Mortality: no effect (n=419 SRT, n=424 control)

Aim

To develop a **3D mathematical and numerical model** of the lung for predicting the final distribution of a liquid bolus initially instilled into the trachea.

Modeling SRT

Computing plug propagation in the entire pulmonary airway tree?

Building a model of SRT

Geometrical model of the lung

Solve the fluid transport in the geometrical model

Geometrical model of the tracheobronchial tree

Simplified pulmonary airway system (3D)

The entire airway system is described as an assembly of straight tubes connected by bifurcations

Geometrical model of the tracheobronchial tree

The geometrical model of the tracheobronchial tree

Specific geometry of the proximal airways

Small DSV, admissible transit time to acinar regions.

Self-similar & asymmetric intermediate TB tree

Small hydrodynamic resistance, airway size distribution.

- h_{min} h_{max}
- Terminal airway: diameter of the terminal bronchioles *D* = 0.5 mm

Generation	Scaling	Ratio L/D	
	h_{max}	h_{min}	
1	0.87	0.69	3.07
2	0.80	0.67	1.75
3	0.83	0.67	1.43
4	0.86	0.74	1.85
5 - 23	0.87	0.67	3.00
Svst	tematic bra	nching asvmr	netrv

Florens et al. *J. Appl. Physiol.*, 2011

Size distributions in the lung airways

References

■ Teminal airways: $9 \le g \le 23 \& \langle g \rangle \approx 15 - 16 \pm 2$

≈ **2**3000

- Acini:
- Dead Space Vol: 153 mL

(15 ± 2-4) (30000: 15000 - 61000) (150 - 170 mL)

Surfactant instillation – Lung Close-up

- The excised lung suspended and ventilated from tracheal cannula.
- A small diameter tube attached to a syringe was inserted into the cannula (upper center of figure).
- A surfactant bolus was formed in the cannula by injecting 0.05 ml of surfactant through the small diameter tube.

Cassidy et al., J. Appl. Physiol. 2001. Anderson et al., J. Appl. Physiol. 2004.

- Excised Rat Lung
- Lung Suspended Vertically
- Normal Bolus Volume
- Surfactant = Survanta
- Ventilation Rate 60 br/min

Surfactant deposition on the airway walls

Propagation of a plug in the tree

When the plug is instilled, it follows a succession of propagations in straight tubes and splitting at bifurcations

Splitting ratio

The splitting ratio is defined as the ratio of the volume of liquid entering the upper daughter, V_2 , to the volume of liquid entering the lower daughter, V_3

Reducing the complexity

Navier-Stokes equation + Mass conservation

$$\rho \frac{\partial \vec{u}}{\partial t} + \rho \, \vec{u} \cdot \vec{\nabla} \vec{u} - \mu \, \Delta \vec{u} + \vec{\nabla} P = \vec{f}$$

$$div(\vec{u}) = 0$$

$$P_{1} - P_{a} = (P_{1} - \pi_{1}) + (\pi_{1} - \pi_{0}) + (\pi_{0} - \pi_{2}) + (\pi_{2} - P_{a})$$

$$= \frac{2\sigma}{a_{1} - h} + \left(\frac{8\mu Q_{1}}{\pi a_{1}^{4}} - \rho g \sin \gamma\right) L_{1} + \left(\frac{8\mu Q_{2}}{\pi a_{2}^{4}} - \rho g(\sin \theta_{2} \sin \varphi + \cos \theta_{2} \sin \gamma)\right) L_{2} - \frac{2\sigma}{a_{2}}$$

$$= \frac{2\sigma}{a_{1} - h} + \left(\frac{8\mu Q_{1}}{\pi a_{1}^{4}} - \rho g \sin \gamma\right) L_{1} + \left(\frac{8\mu Q_{3}}{\pi a_{3}^{4}} - \rho g(\sin \theta_{3} \sin \varphi + \cos \theta_{3} \sin \gamma)\right) L_{2} - \frac{2\sigma}{a_{3}}$$

$$V_{2} = \pi a_{2}^{2} L_{2} = \alpha (V_{1} - V_{c})$$

$$V_{c} = \pi (a_{1}^{2} - h^{2}) L_{0}$$

$$V_{3} = \pi a_{3}^{2} L_{3} = (1 - \alpha) (V_{1} - V_{c})$$

$$h/a_{1} = 0.36 (1 - e^{-2Ca^{0.523}})$$

$$R_{s} = \frac{V_{2}}{V_{3}} = \frac{\alpha}{1 - \alpha}$$

Critical value of Ca for plug splitting in an asymmetric bifurcation

Symmetric

Zheng et al., J Biomech Eng (2005, 2006)

Asymmetric

Rate equations in asymmetric branching

$$\begin{aligned} \left(\frac{8\mu Q_2}{\pi a_2^4} - \rho g\left(\sin\theta_2\sin\varphi + \cos\theta_2\sin\gamma\right)\right) L_2 - \frac{2\sigma}{a_2} &= \left(\frac{8\mu Q_3}{\pi a_3^4} - \rho g\left(\sin\theta_3\sin\varphi + \cos\theta_3\sin\gamma\right)\right) L_3 - \frac{2\sigma}{a_3} \end{aligned}$$

$$\begin{aligned} \text{Dimensionless numbers:} \qquad Ca &= \frac{\mu U_1}{\sigma} \qquad Bo = \frac{\rho g a_1^2}{\sigma} \end{aligned}$$

$$\begin{aligned} \left(\frac{8\mu \left(\pi a_1^2 \frac{\sigma}{\mu} Ca\right) \alpha}{\pi a_2^4} - \frac{\sigma Bo}{a_1^2} \left(\sin\theta_2\sin\varphi + \cos\theta_2\sin\gamma\right)\right) \left(\frac{V_0 - V_c}{\pi a_2^2}\right) \alpha - \frac{2\sigma}{a_2} \end{aligned}$$

$$= \left(\frac{8\mu \left(\pi a_1^2 \frac{\sigma}{\mu} Ca\right) \left(1 - \alpha\right)}{\pi a_3^4} - \frac{\sigma Bo}{a_1^2} \left(\sin\theta_3\sin\varphi + \cos\theta_3\sin\gamma\right)\right) \left(\frac{V_0 - V_c}{\pi a_2^2}\right) \left(1 - \alpha\right) - \frac{2\sigma}{a_3} \end{aligned}$$

$$\begin{aligned} \left(\frac{\alpha}{h_2^6} - \frac{Bo}{8Ca} \frac{f_2}{h_2^2}\right) \alpha - \frac{2\pi a_1^3}{8Ca(V_0 - V_c)h_2} = \left(\frac{(1 - \alpha)}{h_3^6} - \frac{Bo}{8Ca} \frac{f_3}{h_3^2}\right) \left(1 - \alpha\right) - \frac{2\pi a_1^3}{8Ca(V_0 - V_c)h_3} \end{aligned}$$

SRT model

Geometrical model of the lung

Solve the fluid transport in the geometrical model

Parameters

Surface Tension

From 30 to 50 dynes/cm
 σ = 30 dynes/cm
 Bernhard W, et al. Am. J. Respir. Crit. Care Med. , 2000

Viscosity

- μ = 30 cP
 - Survanta (bovine)
 - Infasurf (calf)
 - Curosurf (porcine)
- μ = 3 cP
 - Exosurf (synthetic)

King et al Am. J. Physiol.-Lung Cell. Mol. Physiol., 2002 Lu et al BBA-Biomembranes, 2009

Distribution of surfactant at the end of the tree

2 lb Neonate

Airway geometry

Weibel symmetric tree, branching angle 90°, planar rotation angle 90° ,trachea diameter = 0.4 cm, terminal bronchiole diameter = 0.05 cm \rightarrow 511 branches, 256 leaves, 8 generations

Airway geometry

Weibel symmetric tree, branching angle = 90° , planar rotation angle = 90° , trachea diameter = 2 cm, terminal bronchiole diameter = 0.1 cm \rightarrow 8191 branches, 4096 leaves, 12 generations

Surfactant properties: ρ = 1 g/cc, σ = 30 dynes/cm, μ = 30 cP (Infasurf, Survanta, Curosurf), μ = 3 cP (Exosurf)

Adult

SRT 1 kg Neonate

1 kg neonate in LLD, viscosity μ =30 cP, dose 1ml, flow rate 6 ml/sec. η =52.8% (a) front view (b) top view of the 3D model with color coded amounts percentages in the acini (c) normalized delivery plotted vs i=1 to 256 acini (d) histogram showing 1/SD=4.9.

MF, Tai, Grotberg, PNAS (2015)

SRT 70 kg Adult

70 kg adult in LLD position, dose 40 ml, flow rate 240 ml/s, μ =30 cP, η =13.0%, (a) front view (b) top view (c) vs i=1 to 4096 (d) histogram showing 1/SD=0.41.

MF, Tai, Grotberg, PNAS (2015)

Same geometry, same surfactant, 3 different volumes

SRT Model Efficiency and Homogeneity

Dependence on Flow Rate, Dose Volume, Lung Size

½ dose volume LLD½ dose volume RLD

MF, Tai, Grotberg, PNAS (2015)

SRT in adults for ARDS

Gregory et al, Am J Respir Crit Care Med. **1997** Dose Volume: **2 ml/kg-4 ml/kg** ~ 140/280 ml for 70 kg patient Surfactant Concentration: 25 mg/ml Molecular Dose: 50 mg/kg -100 mg/kg Mortality: 18.8% SRT (n=43) vs 43.8% control (n=16)

Lewis et al, Am J Respir Crit Care Med. **1999** Dose Volume: **4 ml/kg** (40 kg sheep) Surfactant Concentration: 6.25 mg/ml, 25 mg/ml, 50 mg/ml Molecular Dose: 25 mg/kg, 100 mg/kg, 200 mg/kg Result: Improved oxygenation all concentrations, better for 25,50 mg/ml

Spragg et al, N Engl J Med. **2004** Dose Volume: **1 ml/kg ~ 70 ml for 70 kg patient** Surfactant Concentration: 50 mg/ml Molecular Dose: 50 mg/kg Mortality: no effect (n=224 SRT, n=224 control)

Spragg et al, Am J Respir Crit Care Med. 2011 Dose Volume: 1 ml/kg ~ 70 ml for 70 kg patient Surfactant Concentration: 50 mg/ml Molecular Dose: 50 mg/kg Mortality: no effect (n=419 SRT, n=424 control)

SRT Model Efficiency and Homogeneity

Dependence on Flow Rate, Dose Volume, Lung Size

½ dose volume LLD½ dose volume RLD

Flow rate **decreases** efficiency due to increasing R_D "coating cost" Flow rate mostly **increases** homogeneity due to increasing R_S toward unity Neonatal homogeneity is an order of magnitude larger than adult

70 ml adult worst choice, local max, both η and 1/SD near zero from coating cost

Addressing the medical community

Grotberg et al., Am. J. Respir. Crit. Care Med. (2017)

Why this "failure" of SRT in adults?

"Exogenous surfactant replacement in ARDS - One day, someday, or never?" Baudouin SV. N Engl J Med. 2004

Surfactant biochemistry is not working

The surfactant does not reach the acinus

The underlying ARDS injury is still active

Equations modeling the flow motion

Navier-Stokes/Continuity Equations

$$La\left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}\right) = \nabla^2 \mathbf{u} - \nabla p - Bo\sin(\varphi)e_y$$
$$\nabla \cdot \mathbf{u} = 0$$

Dimensionless Parameters:

Laplace #:	$La = \frac{\rho \sigma h}{\sigma h}$	Bond #: [$Bo = \frac{\rho g h^2}{1}$	Capillary #: Ca =	<u><u>Q</u>µ</u>
	μ		σ		$h\sigma$

Dimensional Parameters:

- *u*: fluid velocity e_y : vertical unit vector
- *h*: parent channel height

Q: gas flow rate

p: fluid pressureρ: liquid densityμ: liquid viscosity

φ: roll angleσ: surface tensiong: gravitational const

Assume Passive Gas Phase & *La* << 1 (Stokes Flow)

Parameter Ranges of Ca and Re

Neonates and Adults at airway generation n

Ca, Re, similar order of magnitude for adults and neonates.

Parameter Range of Bo

Neonates and Adults at airway generation n

Order of magnitude difference between adults and neonates

Scaling in Nature

Surface tension, gravity effects, and velocity do not scale identically!

A fundamental misunderstanding?

- Common concept in drug delivery assumes a "well mixed compartment"
- Double the concentration and halve the volume... should result in the same clinical result
- The neonate lung is well mixed, very high 1/SD
- The adult lung is **poorly mixed**, low 1/SD
 - The absolute volume is "critical"
 - Fixed cost of airway coating
- Physics and fluid mechanics send a new message

Surfactant delivery distribution in rabbit experiments

Measurement of surfactant distribution in living systems has been done in animal models by instilling surfactant mixtures with radio-tagged molecules. The lung or lobe is then frozen and sliced into many pieces, on the order of 50-200 depending on the study. The radioactivity or microsphere count of each slice is divided by its weight, giving a measure of the amount of surfactant delivered per unit weight. Then that value is divided by the average value of all of the slices, so a relative delivery ratio is achieved. If the surfactant were uniformly distributed, that ratio would be unity for all slices.

Distribution of instilled surfactant in rabbits per unit weight for

50 ml containing 50 mg surfactant relatively homogeneous distribution.

Gilliard, Pappert, Spragg, J Appl Physiol 1995

Error sources in experimental slices

Neonate LLD Head Level, µ=3 cP Surfactant delivery **η** = 19.9% Dose : 0.4 ml , Flow rate : 20 ml/s 30 **SD = 0.67** 25 1.5 20 15 10 0.5 5 2 3 Surfactant coating Dose : 0.4 ml , Flow rate : 20 ml/s 10 2% **SD = 0.47** 8 1.5 6 2 0.5 0.5 1.5 2 2.5 1 0

The future of SRT

Reliable animal models?

Virtual delivery

(Simulations by A. Kazemi)

Playing with surfactant viscosity (Exosurf)

Case 2: Neonate LLD Head Down 30° µ= 3 cP

η 2x Case 1, SD 6x Case 1
Very inhomogeneous.
No delivery right lung.
Exosurf discontinued.
Biochemistry or delivery?

Exit number

Acinar delivery histogram

Patient-Specific SRT CT Scan and Image Processing

(a) 6 generation airway tree of a 67 y.o. female with normal lungs.(b) same airway tree with equivalent tubes and angles which are inputted to the SRT simulations.

Patient-specific SRT simulations

Numerical simulation of surfactant delivery in an airway tree based on

- (a) 67 y.o. female patient data with tracheal diameter **1.4 cm**.
- (b) Raabe data (1976) with tracheal diameter **2 cm** and similar planar rotation angles from (a).

Conclusions and perspectives

- First physico-mathematical model of SRT
- Computes efficiency and homogeneity down to the individual airway.
- Increasing Ca has two opposite effects: increases homogeneity, but reduces efficiency.
- Delivery in adults is facing simultaneous high values of the Bond number (inhomogeneous splitting) and of the capillary number (airway coating)
- Room for Biomedical engineering of SRT: to determine optimal volumes, orientations, flow rates
- Modify the physical properties of the surfactant (viscosity, density, surface tension)
- Animal models: Large animals (sheep, pig)
- Future: patient specific delivery