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Modeling gene regulatory networks on an 
‘average’ genome and predicting how genetic 
variation effects molecular phenotype (gene 
expression patterns)
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Alternative approach:

Modeling gene regulatory networks on an 
‘average’ genome and predicting how genetic 
variation effects molecular phenotype (gene 
expression patterns)

Model organisms and processes 
are helpful as a training ground
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Transcriptional regulation
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Gene regulatory network
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Reaction-diffusion equations
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Segmentation genes in Drosophila development
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Gap gene network
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Gap gene network
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Information about binding sites

16

DNA

tra
ns

cr
ip

tio
n 

fa
ct

or
s

Probability of TF binding to DNA according to ChIP-Seq data for D. melanogaster:

MacArthur et al. Genome Biology (2009) 10:R80



Binding motif
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Processing data:

TCCCTGAACGG
TCCGAGAACCT
TTGCTCCGCA–
TTCCTGAGCTG
TTCGTAAGGAG

00001142020
02430110410
00120303113
53004000011

TYCSTGARCNG
(IUPAC	format)

A:
C:
G:
T:

Aligned sequences

Positional weight matrix (PWM)

Consensus site sequence 
(motif)



How many binding sites can we expect?
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Typical binding energy histograms (in log scale):

From Sheinman et al. (2012) Rep. Progr. Phys., 75(2)

Connection of PWM-scores with binding energy:

Berg and von Hippel PH (1987) J Mol Biol, 193; 

Stormo and Fields (1998) Trends Biochem Sci 23. 
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Known enhancers are not always enough
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Open chromatin regions match binding patterns

From Li et al. (2011) Genome Biology, 12(4)



Improved D. melanogaster major position matrix motifs by ChiPMunk software 
(http://autosome.ru/iDMMPMM/) (Kulakovskiy et al. 2009, 2010).
Example of information obtained by the software for Kruppel’s regulatory region:
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Analysis of gap gene regulatory regions

12 Kbp upstream 6 Kbp downstream

coding region

18 Kbp region comprising all classic developmental enhancers from the REDfly database. 
Select binding sites from the open chromatin regions (according to DNaseI accessibility data).
Total number of sites: from 889 (28 per TF per target gene) to 1419 (44 per TF per target gene).
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Molecular configurations via thermodynamic approach

Configurations: Statistical weights:

TF

binding site
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Molecular configurations via thermodynamic approach

Configurations: Statistical weights:
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Molecular configurations via thermodynamic approach

BTM

Configurations: Statistical weights:

— activation strengths.
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Molecular configurations via thermodynamic approach

BTM

Configurations: Statistical weights:

— activation strengths.

Short-range repression:

— repression strengths.
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Transcriptional activation via thermodynamic approach

BTM
— activation strengths.

Probability of transcriptional activation of gene ‘a’:

He et al. PLoS Comput. Biol., 2010; Kozlov et al. BMC Genomics, 2014, 2015
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Reaction-diffusion equations for mRNA concentrations (       ) and protein concentrations (       ):

— vector of gap protein concentrations (Hb, Kr, Gt, Kni).

— vector of protein concentrations for external regulators (Bcd, Cad, Tll, Hkb).

— delay time (transcription+translation times).

Hybrid dynamical model for gap gene network

Kozlov et al. (2014) BMC Genomics 15(Suppl 12): S6; Kozlov et al. (2015) BMC Genomics 16(Suppl 13): S7
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Fitting to wild-type expression patterns

The model was fitted to the gap gene expression data for cleavage cycles 13-14A.

proteins at the end of C14A
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1: cross-validation

2: original fitting

3: fitting to random data
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Cross-validation, negative control, local identifiability analysis



30

Testing on expression in reporter constructs

In silico predictions of expression patterns for various reporter constructs (Schroeder et al., 2004; Gallo et 
al., 2010):
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Predictions for the regulatory landscape: 
Many weak binding sites working in concert

Re
la

tiv
e 

Ob
j. 

Fu
nc

. C
ha

ng
e

Coordinate of a Site

We calculate the regulatory weight of each binding site as the RMS-difference between the model outputs 
with and without this site.
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Predictions for the regulatory landscape: 
Many weak binding sites working in concert
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The removing of binding sites from the outside of known enhancers (approximately 40% 
of sites) did not change the patterns qualitatively. This shows that proximate sites 
demonstrate extensive compensatory actions.

We calculate the regulatory weight of each binding site as the RMS-difference between the model outputs 
with and without this site.
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Direct calculation of compensatory effects

Heatmap of correlations between binding sites:
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Binding affinity vs. influence on expression

Another type of ‘weakness’ in the concept of ‘weak sites working in concert’: Only weak 
correlation between the strength of influence on expression and the binding affinity for 
binding sites:
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Simulating evolution of regulatory regions 
under elevated mutational pressure

Individual =

kni

gt

Kr

hb

Chertkova et al. (2017) BMC Evolutionary Biology, 17(Suppl 1)

Population = 100 individuals

Random mutations (rate=0.001 per bp per generation)

Genotype = DNase accessible regulatory regions of 4 gap genes

Calculate ‘phenotypes’

Phenotype = Expression patterns of the gap gene network

Negative selection = select 20 individuals with the least rms-difference between their 
phenotypes and wild-type expression patterns

New generation (100 individuals) = recombination of genes from parents randomly selected 
from the 20 ‘best’ individuals

Repeat for 3500 generations
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Dynamics of the number of binding sites

wt sites
newborn sites
all sites

Generation average/initial number
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Dynamics of the number of binding sites

wt sites
newborn sites
all sites

Generation average/initial number

The dynamics of the population average number of overlapping events 

between all sites
between all but Hb sites
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Core binding sites

core binding 
sites

Site score = rms difference between 
expression patterns with and without this site

Distributions of site scores for wt conditions (zero generation):
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Analysis of genetic variation in Drosophila lines

We apply the gene expression model to analyze single nucleotide polymorphisms (SNPs) in the 
regulatory regions of gap genes in a panel of 213 natural sequenced D. melanogaster lines from two 
populations (Raleigh, NC, and Winters, CA) (Campo et al. 2013).

Gursky et al. (2017) PLoS ONE, 12: e0184657
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Contrasting natural genetic variation with simulated SNPs
Simulation of random point mutations:

1) One point mutation per genotype:
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Contrasting natural genetic variation with simulated SNPs
Simulation of random point mutations:

2) Sets of SNPs per genotype, considering 2 frequency spectra:

2.1) Neutral spectrum: the frequency distribution of 
SNPs extracted from short intron positions of the D. 
mel genome.

2.2) Population-derived spectrum
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Contrasting natural genetic variation with simulated SNPs
Simulation of random point mutations:

2) Sets of SNPs per genotype, considering 2 frequency spectra:

2.1) Neutral spectrum: the frequency distribution of 
SNPs extracted from short intron positions of the D. 
mel genome.

2.2) Population-derived spectrum
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Translating natural genetic variation to gene expression
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Model simulation of the population genotypes

Hb Kr Gt Kni
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Weighted pattern generating potential (wPGP) is better 
than RMS difference

Figure 3B from Kazemian et al. (2010) Plos Biol. 8: e1000456
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Sign of SNP influence on expression

SNP’s influence on expression can be sign-alternating:
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Specific examples of sign analysis

SNP position

A/R:   activating/repressing binding site

SNP influence sign = sign of

<=>DNA
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Specific examples of sign analysis

SNP position

A/R:   activating/repressing binding site

SNP influence sign = sign of

<=>DNA

Other examples of alternating sign of SNP influence on expression: 
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SNPs activate (repress) expression via repressing (activating) sites 

Distribution of SNPs from the population among activating and repressing binding sites:
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Combination of influences from multiple SNPs

Mutating a set of n binding sites in the regulatory region of a gene:

— scaled difference between a PCM matrix element due to i th SNP. 

Probability of transcriptional activation for the mutated regulatory region:

= nonlinear function of
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SNP influence combination in the population genotypes
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SNP influence combination in the population genotypes
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Individual SNPs do not seem to be under purifying selection, 
but combinations of SNPs do.

p = 0.74
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Individual SNPs do not seem to be under purifying selection, 
but combinations of SNPs do.

p = 0.74

Only SNP combinations with strong influence can be distinguished from random 
SNPs under the population-derived spectrum.
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RMS and wPGP measures lead to different evolutionary predictions

RMS-based score:wPGP-based score:
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