MRI as a Probe of Tissue Microstructure

Valerij G. Kiselev University Medical Center Freiburg

There is medicine...

MRI in brief

- 3 tools of MRI:
- RF
- gradients of the main field
- o do nothing

Tissue microstructure

More of tissue microstructure

vessels: Courtesy of B.Weber and N.Logothetis

...and even more...

I

Image courtesy: A.S Lopez, Olli Gröhn et al.

Back to physics: Relevant phenomena

$$\Omega(x) \quad R(x) \quad "D(x)"$$

$$\frac{\partial}{\partial t}\psi = -\nabla j - i\Omega(x)\psi - R(x)\psi$$
$$j = -D(x)\nabla\psi$$

$$\frac{\partial}{\partial t}\psi = -\left[\nabla D(x)\nabla - i\Omega(x) - R(x)\right]\psi$$

$$\left[\frac{\partial}{\partial t} + \nabla D(x)\nabla + i\Omega(x) + R(x)\right]\mathcal{G} = \delta(t)\delta(x - x_0)$$

A typical MR trick

Signal anatomy

$$S = \langle e^{i\varphi} \rangle = G(t,q)$$

-

$$S = e^{-D(t)q^{2}t + W(t)q^{4} + \dots}$$

$$q(t) = \int_{0}^{t} dt' g(t')$$

$$S = \exp\left[-\frac{1}{2}\int dt_{1}dt_{2} \langle v(t_{1})v(t_{2})\rangle q(t_{1})q(t_{2}) + \dots\right]$$

$$= \exp\left[-\frac{1}{2}\int \frac{d\omega}{2\pi} \mathcal{D}(\omega)|q(\omega)|^{2} + \dots\right]$$

10⁵

Number of controlling parameters = 2+++

$$G \neq \text{microstructure}$$

Averaging over the medium

$$\begin{bmatrix} \frac{\partial}{\partial t} + D_0 \nabla^2 + R_0 - U(x) \end{bmatrix} \mathcal{G} = \delta(t)\delta(x - x_0)$$

$$\begin{bmatrix} G_0^{-1} - U \end{bmatrix} G = 1$$

$$G = G_0 + G_0 U G_0 + G_0 U G_0 U G_0 + \dots$$
medium correlation function
$$G = + + + + + + + \dots = \frac{1}{G_0^{-1} - \Sigma}$$

$$G = - + - \Sigma - + - \Sigma - \Sigma - + \dots$$

$$\Sigma = + \dots$$

Novikov, Kiselev 2008

Medium correlation function

correlation functions

Novikov, Kiselev 2008

Effective medium theory

$$S(\omega, q) = \frac{1}{-i\omega + R + D_0 q^2 - \Sigma(\omega, q)}$$

$$R \to R - \Sigma(\omega)$$

 $D_0 \to D_0 - \frac{1}{2}\Sigma''(\omega)$

$$n(\omega) = n_1(\omega) + in_2(\omega)$$

Novikov, Kiselev 2008, 2010

Perturbation theory

analytical result vs. Monte Carlo simulation

Beyond the perturbation theory

Blood spectral line shape

Self-consistent Born approximation:

Novikov, Kiselev 2008

Beyond the perturbation theory...

blood doped with contrast agent

diffusion in complex geometry (here white matter)

Vessel Size Imaging

Fiber tracking

Mori et al. 1999

Conturo et al. 1999

Reisert et al. 2011

Dhital et al. in preparation

Veraart et al. arXiv:1609.09145v1

Conclusions

Thanks to the group

Marco Reisert

... and cooperation partners

Bibek Dhital

Elias Kellner

Alexander Ruh

Irina Mader (FR)

Dmitry Novikov (NYU)