How are position and context simultaneously encoded in the mammalian brain?

R. Monasson, CNRS & Ecole Normale Supérieure, Paris

In collaboration with:

S. Cocco & L. Posani (ENS, Paris), K. Jezek (Charles University Medical School, Pilsen), S. Rosay (Sissa, Trieste)

Theory and Modeling of Complex Systems in Life Sciences, Saint Petersburg, September 2017

Representation of space in the brain

Human: 30 million neurons

Rat: 0.3 million neurons

'present' in all vertebrates

Recordings of electrical activity:

O'Keefe & Dostrovsky (1971) [Nobel Prize 2014]

Neural cells in the hippocampus respond to position in space (called place cells)

Place cells and fields

Place cells in the hippocampus regions CA1 and CA3 present spatially-located firing fields.

- Place fields are retrieved when the animal is placed in the same environment after days
- Stable in dark and against limited changes of environment
- Low-dimensional projections of <u>context-dependent</u> place fields in complex, high-D space

Place cells and fields

Random reward experiment (Half East, half West arm)

Smith, Mizumori, Hippocampus (2006)

Place cells and fields

Place-cell activity can take place on compressed time scales

⇒ Internally generated (input independent) network activity

Main question

How can position(s) and context(s) (task, emotional state, ...) be encoded in the (unique) hippocampal neural network?

Data Analysis: multi-electrode recording of neural cells in rats
 Inference of effective network, and
 Decoding of cognitive maps

• Theory: Single network « storing » multiple context-dependent maps

Memory of continuous attractors (cf. Hopfield model for point attractors)
Transitions between attractors

Teleportation experiment (1)

Data Structure

Microarray recordings of brain activity \sim 30 recorded neurons

Teleportation experiment (2)

Data Structure

Rat trained to memorize two environments (A and B)
Two reference sessions are recorded (one for each environment).

Teleportation experiment (3)

Experiment is conducted such that remapping takes place

[CA3 : global remapping, CA1 : rate remapping]

Teleportation experiment (4)

Data Structure

Test session: light cues are suddenly changed from one box to the other (teleportation)

Teleportation experiment (5)

Decoder: procedure to translate brain activity $\vec{s}(t)$ into one of the memorized states

$$\vec{s} \rightarrow \{\text{environments}\}$$
 (1)

- from two reference sessions we infer two parametric probabilistic models for the activity $P(\vec{s} \mid M = A, B)$
- at each time in the test session we compute log-likelihood difference for map given the activity:

$$\Delta \mathcal{L}(t) = \log \left(\frac{P(A \mid \vec{s}(t))}{P(B \mid \vec{s}(t))} \right)$$
 (2)

NB: if bin width Dt small enough, $s=0,1 \rightarrow$ binary valued activities (Ising «spins»)

Teleportation experiment (6)

neural space

environment 1

environment 2

Effective Ising model captures

pattern of correlations:

$$P(M \mid \vec{s}) \propto P(\vec{s} \mid M) = \frac{1}{\mathcal{Z}^M} \exp \left(\sum_i h_i^M s_i + \sum_{i < j} J_{ij}^M s_i s_j \right)$$
(3)

Inference procedure:

- · solve the inverse problem to infer couplings $J_{ii}^{A,B}$ and fields $h_i^{A,B}$ from reference sessions A and B with A.C.E. (Cocco & Monasson 2011)
- compute likelihoods for A and B in the test session

$$\mathcal{L}_{Ising}^{A,B}(t) := \sum_{i} h_{i}^{A,B} s_{i}(t) + \sum_{i < j} J_{ij}^{A,B} s_{i}(t) s_{j}(t) - \log(\mathcal{Z}^{A,B})$$
 (4)

Cross-validation of decoding method (1)

perform decoding on constant-environment test sessions

Transitions (1)

Sometimes the Ising decoder suggests that the represented environment in the brain is not the physical external one

Transitions (2)

Sometimes the Ising decoder suggests that the represented environment in the brain is not the physical external one

Reminder: Teleportation experiment

Test session: light cues are suddenly changed from one box to the other (teleportation)

Transitions: Results (1)

Teleportation enhances network instability over both short and long term periods

Transitions: Results (2)

Is spatial position accurately encoded at all times despite the presence of fast contextual flickerings?

Transitions: Abstract model of map memory

In decoding so far: one Ising model for each map, but there is a single hippocampus ... Can we have a model storing all maps in a single set of interactions?

Transitions: Abstract model of map memory

In decoding so far: one Ising model for each map, but there is a single hippocampus ... Can we have a model storing all maps in a single set of interactions?

Draw some inspiration from inferred Ising models:

Similar to Lebowitz-Penrose model for liquid/vapor transition

Neural network model (1)

Neuron = binary state, silent or active: $\sigma_i = 0.1$

Interactions J_{ij} :

Neural network model (2)

Learning process

Neural network

Neural network model (2)

Physical space

Neural network

Distribution of neural activity configurations?

Neural network model (3)

• **Dynamical rules:** (on the N-dimension hypercube)

$$\sigma_{1},...,\sigma_{i} = 0,...,\sigma_{N} \xrightarrow{R \atop 1/R} \sigma_{1},...,\sigma_{i} = 1,...,\sigma_{N} \quad \text{with} \quad \log R = \frac{1}{2T} \sum_{j(\neq i)} J(\left|\vec{x}_{i} - \vec{x}_{j}\right|) \sigma_{j}$$

Noise level

Stationary distribution of neural activity configurations:

$$P(\sigma_1, \sigma_2, ..., \sigma_N) \propto \exp\left[\frac{1}{T} \sum_{i < j} J(|\vec{x}_i - \vec{x}_j|) \sigma_i \sigma_j\right]$$

i.e. Gibbs measure associated to MCMC dynamics with rates

Neural network model (4)

Physical space

Neural network

Distribution of neural activity configurations:

$$P(\sigma_1, \sigma_2, ..., \sigma_N) \propto \exp\left[\frac{1}{T} \sum_{i < j} J(|\vec{x}_i - \vec{x}_j|) \sigma_i \sigma_j\right]$$

Lattice gas model and continuous attractor

Lattice-gas model for the liquid/vapor transition:

Lebowitz and Penrose (1966)

$$J_{ij} = J(\left|\vec{x}_i - \vec{x}_j\right|)$$

Order parameter = Coarse-grained density:

$$\rho(x) \equiv \lim_{\epsilon \to 0} \lim_{N \to \infty} \frac{1}{\epsilon N} \sum_{(x - \frac{\epsilon}{2})N \le i < (x + \frac{\epsilon}{2})N} \langle \sigma_i \rangle$$

T=0 T_{spinodal}

Vapor/Extended phase

Continuous attractors & « population » coding

- successive firing of neurons along the ring in 1D
 or higher D = continuous attractor
- active bump = collective coordinate \vec{x} for the neural activity (robust encoding)
- bump persists without any input, but may be driven by an input (stimulus or other neural activity)

[Yoon et al., 2013]

• 2 points of view:

fixed time

fixed neuron

(place field)

Transitions: Abstract model of map memory

neural space

environment 1

environment 2

environment 3

Distribution of neural activity configurations:

$$P(\sigma_1, \sigma_2, ..., \sigma_N) \propto \exp \left[\sum_{i < j} J_{ij} \sigma_i \sigma_j + h \sum_i \sigma_i \right]$$

with

$$J_{ij} = \sum_{e} J\left(\left|\vec{x}_{i}^{e} - \vec{x}_{j}^{e}\right|\right)$$

Samsonovitch & McNaughton (1997)

R.M. & Rosay (2013-2015)

In the model: New environment $e = random permutation \pi$

Transitions: Abstract model of map memory

Hamiltonian

$$H = -\sum_{i < j} \sum_{l} J^{0}_{\pi^{l}(i), \pi^{l}(j)} \sigma_{i} \sigma_{j}$$

R.M., Rosay (2015)

- → Storage of activity configurations: 'finite' basin of attractions (Hopfield model)
- → Storage of spatial maps: basins of attractions ≈ space of configurations!!

Scenarios for spontaneous transitions?

MCMC simulations (90x90 neurons, D=2)

Scenarios for spontaneous transitions?

MCMC simulations (1000 neurons, 10% active at any time, D=1)

- 'Diffusion' of bumps within maps (quasi-particle obeys Stokes-Einstein!!)
- Spontaneous transitions from one map to another. Mechanism(s) ??

Scenarios for spontaneous transitions?

Transition facilitated by local similarities between maps (Wormhole)

Transition through 'evaporation' and 'condensation'

In real recordings??

Relevance of Theta oscillations

Conclusions & Perspectives

Open neuroscience issues:

biological constraints (realistic aspects, e.g. adaptation, imperfect learning,...)
effects of rhythms? *(exploration of activity landscape)*

Statistical physics:

- optimal storage of D-dimensional attractors?
- bumps: detection, interactions, computations, ...?
- bumps in « complex » spaces?
- + Phenomenology of multiple continuous attractor network model compatible with experiments. Can we get further evidence from real data?

A few references

Experiments: A Sense of Where You Are, New York Times, April 30th, 2013

Some references:

Amari. *Biological cybernetics* 27, 77 (1977)

Battaglia, Treves. *Physical Review E* 58, 7738 (1998)

Smith, Mizumori. Hippocampus 16, 716 (2006)

Fyhn et al. *Nature* 446, 190 (2007)

Jezek, Henriksen, Treves, Moser, Moser. Nature 478, 246 (2011)

Buzsaki, Moser. Nature Neuroscience 16, 130 (2013)

Self citations: (available from my web page)

With S. Rosay: *Physical Review E* 87, 062813 (2013) (storage capacity)

Physical Review E 89, 032803 (2014) (dynamics)

Physical Review Letters 115, 09810 (2015) (transitions)

With S. Cocco, K. Jezek & L. Posani: *J. Comput. Neurosci. Doi:10.1007/*

s10827-017-0645-9 (2017)

With S. Cocco, L. Posani, G. Tavoni: Current Opinion in Systems Biology 3, 103 (2017)