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Representation of space in the brain
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Recordings of electrical activity:

Human : 30 million neurons
Rat : 0.3 million neurons

‘present’ in all vertebrates

O'Keefe & Dostrovsky (1971)
[Nobel Prize 2014]

Neural cells in the hippocampus respond to position in space

(called place cells)



Place cells and fields

Place cells in the hippocampus regions CA1 and CA3 present
spatially-located firing fields.
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* Place fields are retrieved when the animal is placed in the same environment after days
e Stable in dark and against limited changes of environment
* Low-dimensional projections of context-dependent place fields in complex, high-D space




Random Foraging

Place cells
and fields

Asymptotic Performance
Context A Context B

-

Random reward experiment
(Half East, half West arm)

Smith, Mizumori,
Hippocampus (2006)
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Main question

How can position(s) and context(s) (task, emotional state, ...) be
encoded in the (unique) hippocampal neural network?

* Data Analysis: multi-electrode recording of neural cells in rats
Inference of effective network, and
Decoding of cognitive maps

* Theory: Single network « storing » multiple context-dependent maps

Memory of continuous attractors (cf. Hopfield model for point attractors)
Transitions between attractors



Teleportation experiment (1)
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Microarray recordings of brain activity ~ 30 recorded neurons

Jezek, Henriksen, Treves, Moser & Moser, Nature 478, 246 (2011)




Teleportation experiment (2)

Data Structure

lights

-~

Box A Box B

Rat trained to memorize two environments (A and B)
Two reference sessions are recorded (one for each environment).



Teleportation experiment (3)

Data Structure

place fields

\

Box A Box B

Experiment is conducted such that remapping takes place

[CA3 : global remapping, CA1 : rate remapping]



Teleportation experiment (4)

Data Structure

- -

light switch

t in (0, T) t in (T, t__tot)

Test session: light cues are suddenly changed from one box to the
other (teleportation)



Teleportation experiment (5)

Decoder: procedure to translate brain activity s(t) into one of the

memorized states
S — {environments} (1)

- from two reference sessions we infer two parametric probabilistic
models for the activity P(S | M = A, B)

- at each time in the test session we compute log-likelihood
difference for map given the activity:

INLAED
AL = log <P(B | §(t))> 2

NB: if bin width Dt small enough, s=0,1 = binary valued activities (Ising «spins»)



Teleportation experiment (6)

neural space environment 1 environment 2
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Effective Ising model captures
pattern of correlations:

P(M|3) o P(S|M) = — exp ZhMS,+Z} sisi| (3
l<]

Inference procedure:

- solve the inverse problem to infer couplings J® and fields "
from reference sessions A and B with A.C.E. (COCCO & Monasson 2011)

- compute likelihoods for A and B in the test session

Lioing(t Z hPsi(t) + D 15"si(t)s;(t) — log(24F)  (4)

l<j
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environment =B

time (s)



Transitions (1)

Sometimes the Ising decoder suggests that the representec
environment in the brain is not the physical external one

151 environment = A >

81 815 82 825 83



Transitions (2)

Sometimes the Ising decoder suggests that the represented
environment in the brain is not the physical external one

15

151

< environment = A >

Lg>L,
spontaneous transition?

81 81.5 — 82 82.5 83



Reminder: Teleportation experiment

- -

light switch

t in (0, T) t in (T, t__tot)

Test session: light cues are suddenly changed from one box to the
other (teleportation)



Transitions: Results (1)

Teleportation enhances network instability over both short and
long term periods
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Transitions: Results (2)

neuron

context

physical 'Y
space

time

Is spatial position accurately encoded at all times despite the
presence of fast contextual flickerings?



Transitions: Abstract model of map memory

In decoding so far: one Ising model for each map, but there is a single hippocampus ...
Can we have a model storing all maps in a single set of interactions?



Transitions: Abstract model of map memory

In decoding so far: one Ising model for each map, but there is a single hippocampus ...

Can we have a model storing all maps in a single set of interactions?

Draw some inspiration from inferred Ising models:

31 Map A| |

Short-range Long-range
attractive repulsive
couplings couplings




Neural network model (1)

Neuron = binary state, silent or active: o.=0,1

l

Interactions J;;:

Physical space Neural network

Neuroni




Neural network model (2)

Physical space
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Neural network model (2)

Physical space Neural network
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Distribution of neural activity configurations?




Neural network model (3)
* Dynamical rules: (on the N-dimension hypercube)

0,...,0,=0,...,0, O05...,0, =1,...,0, with logR =— E J(‘ D

J(#l)

Noise level

e Stationary distribution of neural activity configurations:

P(o,,0,,..., )ocexp[ EJ(|x x|)oa

i<j

i.e. Gibbs measure associated to MCMC dynamics with rates



Neural network model (4)

Physical space
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Neural network

Distribution of neural activity configurations:

P(o,,0,,...,0,) xexp —EJ X, — X,

i<j



Lattice-gas model for the
liquid/vapor transition :

Lebowitz and Penrose (1966)

Order parameter =
Coarse-grained density:

T

0

Lattice gas model and continuous attractor
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Continuous attractors & « population » coding

e successive firing of neurons along the ring in 1D
or higher D = continuous attractor

e active bump = collective coordinate x for the m
neural activity (robust encoding) < /\ /\

e bump persists without any input, but may be

driven by an input (stimulus or other neural activity) [Yoon etal., 2013]

e 2 points of view: | fixed time |

r.

T \ X | fixed neuron |
=X,

(place field)



Transitions: Abstract model of map memory

neural space environment 1 environment 2 environment 3
O
O O
O

Distribution of neural activity configurations:

P(0,,0,,...,0)) xexp E]ijaiaj +h20i Samsonovitch &
i<j i McNaughton (1997)
with ]ij _ E‘]( )—éf_ 55; ) R.M. & Rosay (2013-2015)
e

In the model: New environment e = random permutation 1t




Transitions: Abstract model of map memory

Hamiltonian = —2 EJ?T N eep

<; /7

=>» Storage of activity configurations: ‘finite’ basin of attractions (Hopfield model)

=>» Storage of spatial maps: basins of attractions = space of configurations !!



Scenarios for spontaneous transitions?

MCMC simulations (90x90 neurons, D=2)
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Scenarios for spontaneous transitions?

MCMC simulations (1000 neurons, 10% active at any time, D=1)

Lo B : % 5 3 y
place field center 7 (i) in environment | place field center 7 (i) in environment 2

* ‘Diffusion’ of bumps within maps (quasi-particle obeys Stokes-Einstein!!)

e Spontaneous transitions from one map to another. Mechanism(s) ??



Scenarios for spontaneous transitions?
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Transition facilitated by local Transition through ‘evaporation’ and
similarities between maps (Wormhole) ‘condensation’
In real recordingS?? Entire theta cycle First half Second half
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Conclusions & Perspectives

Open neuroscience issues:

biological constraints (realistic aspects, e.g. adaptation, imperfect learning,...)

effects of rhythms? (exploration of activity landscape)

Statistical physics:

- optimal storage of D-dimensional attractors?

- bumps: detection, interactions, computations, ...?

- bumps in « complex » spaces?

+ Phenomenology of multiple continuous attractor network model compatible
with experiments. Can we get further evidence from real data?
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