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Disclaimer



What does it mean to quantify microstructure?

Muscle	fiber	x-section Neuronal	white	matter	fiber	x-section

ORGANIZATION OF RHESUS MONKEY COMMISSURES 527 

Fig. 5. A A series of desmosomal junctions (arrows) between two 
intermediate filament rich glial processes in the dorsal lamina of the 
hippocampat commissure glial capsule. Several medium-sized my- 
elinated axons as well as two very small unmyelinated axons are seen 
immediately adjacent to these interconnected glial processes. Magnifi- 
cation 21,000~. B: Apposition of two filamentous processes that  form a 
villus in the ventral lamina of the glial capsule that  delimits the hippo- 

campal cornmissure. The electron density of glial processes in this region 
varies from a dark granular matrix (left) to a light flocculent matrix 
(right). Often, the membranes of the processes seem to fuse for a moder- 
ate distance (arrows) and then separate again, perhaps forming tight or 
gap junctions. The external surface of the ventral lamina is bounded by 
a basal lamina, and the individual processes are attached to i t  via hemi- 
desmosomes (arrowheads) Magnification 30,000~. 

Fig. 6. A: Electron micrograph of axons in sector 2 of the corpus callosum in an adult rhesus monkey. 
Notice the clusters of small unmyelinated axons (asterisks). B Electron micrograph of axons in sector 6 of 
the same corpus callosum shown in A. In the center of this micrograph is an example of the very large axons 
encountered only in sectors 6,7, and 10. Both micrographs, 8,500~ magnification. 

1	major	direction

Similar	diffusion	
tensor	eigenvalues

Can we at least distinguish b/w 2 tissues?



… at the very least, distinguish between these?

Identical	permeable	
barriers	with	same	avg
density	è same	D0 , D∞

Novikov,	Fieremans,	et	al.,	PNAS	111,	5088	(2014)

F.T.(barrier	density	correlation	function)	=	power	spectrum

�(k) =

Z
dx hn(x0 + x)n(x0)ie�ikx

�(k) ⇠ kp , k ! 0

/ |n(k)|2

Dinst(t) =
@

@t

hx2i
2

' D1 + const · t�#

d =	space	dimension

# =
p+ d

2
• Structural	exponent	p:	

p=0:	uncorrelated	(~Poissonian fluctuations);	short-range
p>0:	more	ordered	(smaller	fluctuations);	hyperuniform
p<0:	less	ordered	(larger	fluctuations);	“strong	disorder”



D1 D2 D3

After	coarse-graining:	Slightly	different	Dj due	to	fluctuations	in	the	#	of	barriers

measured	Dinst(t)

Add	up	“resistances”,	find so	that	

Long	time	limit:	 L(t) ⇠
p
D1t � ā

Fluctuation	correction	at	a	given	
diffusion	length	scale	L(t);	decreases	
with	time	(“homogenization”)	

inst



D1 D2 D3

After	coarse-graining:	Slightly	different	Dj due	to	fluctuations	in	the	#	of	barriers	Nj

(Poissonian)
[Ernst	et	al,	1983]

Dinst(t)�D1 / h(�D)2i / h(�n)2i

Long	time	limit:	 L(t) ⇠
p
D1t � ā

⇠ 1

t#
, # related	to	disorder	class	[DN	et	al.,	2014]

⇠ e�t/t0 , periodic



How	one	really	calculates	this…
• Coarse-grain	down	to	L(t) è effective diffusion eqn
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The outline of SI Text is as follows: section I provides details on
deriving the relation 7 in the main text Materials and Methods;
section II applies this result to derive exact asymptotic limits for
the d = 1 universality classes shown in Figs. 1 and 5; and section III
provides details for our analysis of time-dependent diffusion trans-
verse to muscle fibers.

I. Effective Medium Treatment of the Homogenized
Diffusion Equation
The entire premise of the long-time limit treatment is based on the
realization that diffusion effectively acts as an (almost Gaussian)
filter which gradually homogenizes the fine structure of a sample. In
other words, after coarse-graining over a sufficiently large diffusion
length LðtÞ, we are left with an effectively much simpler-looking
sample, characterized by the smoothly varying local diffusivity

DðrÞ=D+ δDðrÞ;  D≡ hDðrÞi [S1]

entering the homogenized diffusion equation

∂tψ =D∂2rψ + ∂rðδDðrÞ∂rψÞ [S2]

for the coarse-grained density ψðt; rÞ of the random walkers.
For our coarse-grained problem, we focus on the disorder-

averaged Green’s function Gt;r of Eq. S2, which is the funda-
mental solution averaged over the disorder realizations embodied
in the stochastic component δDðrÞ. The disorder-averaged Gt;r
becomes translation-invariant in both t and r due to the statisti-
cally uniform and stationary character of the disorder (1). This
naturally leads to the Fourier representation

Gω;q =
Z

dr  dt  eiωt−iqr  Gt;r =
1

−iω+Dq2 −Σðω; qÞ
[S3]

in the effective medium form (1, 2). The lowest-order contribu-
tion to the self-energy part Σðω; qÞ, up to OððδDÞ2Þ, reads

Σðω; qÞ ’
Z

ddk
ð2πÞd

 
½q · ðk+ qÞ$2ΓDðkÞ
−iω+Dðk+ qÞ2

: [S4]

To obtain Eqs. S3 and S4, one treats the last term of Eq. S2 as an
operator perturbation, Uψ = ∂rðδDðrÞ∂rψÞ, to the free diffusion
operator L0 = ∂t −D∂2r (Fig. S1A), then finds the Green’s func-
tion of Eq. S2 as an operator inverse (Fig. S1B)

ðL0 −UÞ−1 =Gð0Þ +Gð0ÞUGð0Þ +Gð0ÞUGð0ÞUGð0Þ + . . .

in terms of an infinite series in the powers ofU, whereGð0Þ ≡L−1
0 is

the free diffusion propagator; and subsequently averages this series
over the disorder term by term, which turns the powers of δDðrÞ
into the corresponding correlation functions. The smallness of the
ratio δDðrÞ=D ’ δDðrÞ=D∞, controlled by a negative power of the
increasing diffusion length LðtÞ, eventually warrants keeping only
the two-point correlators ΓDðr1 − r2Þ= hδDðr1ÞδDðr2Þi, and ap-
proximately factorizing higher-order correlators into products of
ΓD. Working in the Fourier domain, with Gð0Þ

ω;k = 1=ð−iω+Dk2Þ
and ΓDðkÞ=

R
dr  e−ikrΓDðrÞ, converts the above series into the

geometric series (Fig. S1B) in the powers of Σðω; qÞ given by
[S4], and schematically shown in Fig. S1C.

We now use Eqs. S3 and S4 to derive the ω→ 0, t→∞ be-
havior of the diffusion metrics. The most straightforward one is
the (retarded) dispersive diffusivity DðωÞ,

DðωÞ=
Z∞

0

eiωthvðtÞvð0Þidt [S5]

whose real part is the Fourier transform of the velocity autocorrela-
tor (compare with Eq. 6 of the main text). DðωÞ is determined
by the pole of the propagator S3: Dq2 −Σðω; qÞ≡DðωÞq2 +Oðq4Þ
(cf. ref. 1), such that the disorder-averaged effective diffusion equa-
tion becomes dispersive:

−iωψðω; rÞ=DðωÞ∂2rψðω; rÞ+O
!
∂4rψ

"
: [S6]

In particular, the macroscopic diffusion constant is just the
low frequency limit found from expanding Σ(0,q), Eq. S4, up
to q2:

D∞ ≡DðωÞjω=0 ’ D−
1
d

Z
ddk
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1
d

D
ðδDÞ2

E
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1
d

D
ðδDÞ2

E

D∞
:

[S7]

Here hðδDÞ2i is the sample variance of the variable component
of DðrÞ (Eq. S1). Above we also used ðq · kÞ2 → q2k2=d in d di-
mensions for the isotropic ΓDðkÞ after the angular integration.
From now on, we will express everything in terms of the mac-

roscopic limit D∞ instead of D. For that, we will use the fact that
these quantities differ only by OððδDÞ2Þ (compare with Eq. S7)
and, therefore, their difference can be neglected in all terms where
ΓD enters, e.g., in the last term of Eq. S7, within our chosen ac-
curacy. This also applies to the correlator ΓD itself: within our
accuracy, the variable component δDðrÞ→DðrÞ−D∞ entering ΓD
can be effectively counted relative to D∞ rather than to the mean
D, which is why we have defined it in this way in the main text.
Hence, we obtain

Gω;q =
1

−iω+D∞q2 − δΣðω; qÞ
; [S8]

δΣðω; qÞ= iω  q2

D∞d

Z
ddk
ð2πÞd

ΓDðkÞ
−iω+D∞k2

+O
!
q4
"
: [S9]

Here we expanded the self-energy part S4 up to q2, subtracted its
ω= 0 contribution that renormalizes D→D∞ such that δΣ =
Σ−Σjω=0, and substituted D→D∞ in the denominator under
the integral in Eq. S9 since δΣ is already an OððδDÞ2Þ correction.
Essentially, this amounts to using the macroscopic limit of the free
diffusion propagator, Gð0Þ → 1=ð−iω+D∞q2Þ, inside the Feynman
diagram in Fig. S1C. Collecting the ∼ q2 terms in the denominator
of Eq. S8, we obtain the asymptotically exact dispersive correction
to D∞ given by Eq. 7 of the main text.

II. One-Dimensional Disorder Universality Classes
Here we provide the derivation of the asymptotic results which
we confirm with Monte Carlo (MC) simulations in Figs. 1 and 5.
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the two-point correlators ΓDðr1 − r2Þ= hδDðr1ÞδDðr2Þi, and ap-
proximately factorizing higher-order correlators into products of
ΓD. Working in the Fourier domain, with Gð0Þ

ω;k = 1=ð−iω+Dk2Þ
and ΓDðkÞ=

R
dr  e−ikrΓDðrÞ, converts the above series into the

geometric series (Fig. S1B) in the powers of Σðω; qÞ given by
[S4], and schematically shown in Fig. S1C.

We now use Eqs. S3 and S4 to derive the ω→ 0, t→∞ be-
havior of the diffusion metrics. The most straightforward one is
the (retarded) dispersive diffusivity DðωÞ,

DðωÞ=
Z∞

0

eiωthvðtÞvð0Þidt [S5]

whose real part is the Fourier transform of the velocity autocorrela-
tor (compare with Eq. 6 of the main text). DðωÞ is determined
by the pole of the propagator S3: Dq2 −Σðω; qÞ≡DðωÞq2 +Oðq4Þ
(cf. ref. 1), such that the disorder-averaged effective diffusion equa-
tion becomes dispersive:

−iωψðω; rÞ=DðωÞ∂2rψðω; rÞ+O
!
∂4rψ

"
: [S6]

In particular, the macroscopic diffusion constant is just the
low frequency limit found from expanding Σ(0,q), Eq. S4, up
to q2:

D∞ ≡DðωÞjω=0 ’ D−
1
d

Z
ddk
ð2πÞd

 
ΓDðkÞ
D

≡D−
1
d

D
ðδDÞ2

E

D
’ D−

1
d

D
ðδDÞ2

E

D∞
:

[S7]

Here hðδDÞ2i is the sample variance of the variable component
of DðrÞ (Eq. S1). Above we also used ðq · kÞ2 → q2k2=d in d di-
mensions for the isotropic ΓDðkÞ after the angular integration.
From now on, we will express everything in terms of the mac-

roscopic limit D∞ instead of D. For that, we will use the fact that
these quantities differ only by OððδDÞ2Þ (compare with Eq. S7)
and, therefore, their difference can be neglected in all terms where
ΓD enters, e.g., in the last term of Eq. S7, within our chosen ac-
curacy. This also applies to the correlator ΓD itself: within our
accuracy, the variable component δDðrÞ→DðrÞ−D∞ entering ΓD
can be effectively counted relative to D∞ rather than to the mean
D, which is why we have defined it in this way in the main text.
Hence, we obtain

Gω;q =
1

−iω+D∞q2 − δΣðω; qÞ
; [S8]

δΣðω; qÞ= iω  q2

D∞d

Z
ddk
ð2πÞd

ΓDðkÞ
−iω+D∞k2

+O
!
q4
"
: [S9]

Here we expanded the self-energy part S4 up to q2, subtracted its
ω= 0 contribution that renormalizes D→D∞ such that δΣ =
Σ−Σjω=0, and substituted D→D∞ in the denominator under
the integral in Eq. S9 since δΣ is already an OððδDÞ2Þ correction.
Essentially, this amounts to using the macroscopic limit of the free
diffusion propagator, Gð0Þ → 1=ð−iω+D∞q2Þ, inside the Feynman
diagram in Fig. S1C. Collecting the ∼ q2 terms in the denominator
of Eq. S8, we obtain the asymptotically exact dispersive correction
to D∞ given by Eq. 7 of the main text.

II. One-Dimensional Disorder Universality Classes
Here we provide the derivation of the asymptotic results which
we confirm with Monte Carlo (MC) simulations in Figs. 1 and 5.

Novikov et al. www.pnas.org/cgi/content/short/1316944111 1 of 5

A

B

C

Fig. S1. Disorder averaging of the coarse-grained diffusion Eq. S2 represented by Feynman diagrams. (A) The elementary scattering act off the static disorder
potential U= ∂rðδDðrÞ∂r . . .Þ is represented by the vertical dashed line. In the Fourier representation, the scattering momentum (wave vector) is conserved at
each scattering event: the sum of incoming momenta (k1 and k2 − k1) equals the outgoing momentum k2. The scattering energy (frequency ω) is the same in all
of the Green’s functions since the disorder is static. (B) The full Green’s function S3 of Eq. S2, represented by the bold line, is given by an infinite series, in which
the nth order term corresponds to n such scattering events, with the propagation between them described by the free Green’s functions Gð0Þ (thin lines).
Physically, the series represents the probability to propagate as a sum of the probabilities of the mutually exclusive outcomes, which correspond to being
scattered exactly n times, n= 0,1,2, . . .. Averaging over the disorder turns the products of δDðr1Þ . . . δDðrnÞ into the corresponding correlation functions; the sum
of all irreducible diagrams (which cannot be split into two parts by cutting a single Gð0Þ line) is by definition the self-energy part Σ. (C) To the lowest (second)
order, Σ is given by a single Feynman diagram with the two-point correlator ΓD (Eq. S4). The first-order term does not contribute, since hδDi≡0.

A B

Fig. S2. The asymptotic power-law tail in the time-dependent diffusion in muscle fibers from ref. 7. (A) Comparing the t−1=2 (thin blue and red dashed lines)
and t−1 (thick black dashed lines) power laws for calf TG and H (compare with Fig. 3B). (B) Three-parameter fit of λ⊥ðtÞ to the power law 5, accounting for
experimental error bars, for TG (four longest time points), and for H (all data points) yields power law exponents ϑ= 0:44± 0:30 and 0:61± 0:07, corre-
spondingly. Large SE in tongue is due to a relatively narrow range of experimentally available t.

Table S1. Fit results for transverse eigenvalues λ⊥ðtÞ in H and TG muscles (7) (Fig. 3)

Muscle
D0,

μm2/ms ζ τ, ms
D∞,

μm2/ms τD, ms τr , ms ℓ, μm S=V , μm−1
κ × 102,
μm/ms a, μm

H 0.8 (fixed) 2.59 68.8 0.223 20.5 26.5 7.42 0.699 5.39 5.72
TG 1.09 2.84 1,328 0.283 329 467 38.0 0.150 1.43 26.7

The first three columns in the table are the fit parameters using D(t) obtained from Eq. S27, the rest are the
quantities derived from them.
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• Disorder-averaged	propagator	up	to	(δD)2

equivalent time- or frequency-dependent diffusion metrics, with rela-
tions between them described in refs. 36 and 37. To interpret various kinds
of diffusion measurements, such as dMRI results (17, 20), here we outline
how the power law tail 2 manifests itself in these metrics. We assume the
sample to be statistically isotropic, so that the diffusion metrics are isotropic
tensors, and the correlation functions depend on r = jrj and k= jkj. Gener-
alization to the anisotropic case presents no conceptual difficulty, but makes
the presentation more cumbersome.

The instantaneous diffusion coefficient DinstðtÞ defined in Eq. 3 is the nat-
ural metric to study structural correlations, as it quantifies how the spreading
of a packet of random walkers is hindered by the mesoscopic structure at the
time scale t. From our perspective, it is a perfect quantity to determine the
exponent ϑ. However, this is not the most commonly used metric in practice.

The most commonly reported diffusion coefficient

DðtÞ≡ Æδx2ðtÞæ
2t

=
1
t

Zt

0

Dinstðt′Þdt′ [4]

describes the dynamics of the cumulative, rather than instantaneous, mean-
squared displacement along a particular direction x̂ over the diffusion time t.
This is the case both in the dMRI (4, 17) and in the direct molecular tracking
techniques (3). This definition has a perceived advantage of dividing by time,
rather than differentiating with respect to it; clearly, differentiating increases
the noise, while dividing does not.

The definition 4 may mask the exponent ϑ. Indeed, its long t behavior

DðtÞ ’ D∞ + const · t−~ϑ,  ~ϑ=minfϑ,1g: [5]

In other words, for the tail 2 to be manifest in DðtÞ, it should be sufficiently
slow, ϑ≤ 1, so that it is unaffected by the averaging over the increasing in-
terval t in [4]. In the opposite case, ϑ> 1, the t−ϑ term in DinstðtÞ becomes
subleading to the 1=t term from the integral in [4] converging at short t.

Hence, to practically determine the dynamical exponent ϑ, one could first
check whether the fit to [5], using the less noisy definition 4, produces the value
~ϑ< 1. If it does (as in our example of diffusion transverse to muscle fibers), this is
the true value of ϑ= ~ϑ. In the opposite case, the fit would yield the 1=t tail, ~ϑ= 1,
which would mask the true value of ϑ> 1. Then, one must perform the differ-
entiation DinstðtÞ= ∂t ½tDðtÞ$ and obtain ϑ from the fit to [3], with the un-
fortunate effect of amplifying the measurement noise, as shown by comparing
Figs. 1 and 5. Practically, this results in more stringent requirements on the signal-
to-noise ratio and on the greater number of experimental time points.

There is another useful way of uncovering the exponent ϑ, as long as ϑ< 2,
without the need to take a time derivative. The same power law tail

ReDðωÞ≡ 1
2
Æv−ωvωæ ’ D∞ + const · jωjϑ,  ω→ 0, [6]

persists in the dispersive diffusivityDðωÞ≡
R∞
0 dt   eiωtDðtÞ, which is the Fourier

transform of the retarded velocity autocorrelator 2. The physical meaning of
DðωÞ is in relating the current Jω,r =−DðωÞ∇rψω;r of the random walkers to
their density gradient (36), somewhat similar to the dispersive electrical

conductivity; it defines the pole of the diffusion propagator (see refs. 13, 14,
16, 36, and 37 and also the discussion in SI Text, Section I). Fortunately, there
exists a dMRI measurement protocol, the oscillating gradient technique (4,
20), which directly measures (37) ReDðωÞ. This is the quantity used in the
example of diffusion in cerebral gray matter (Fig. 4).

Derivation of Eq. 1: Homogenization. In this work, we consider the most
widespread situation, when a sample has a nonzero macroscopic diffusion
constant D∞ ≡ ½Æδx2æ=2t$t→∞, i.e., the diffusion asymptotically becomes
normal, or Gaussian. A well-defined macroscopic D∞, observed in an over-
whelmingly broad variety of mesoscopically heterogeneous samples, attests
to the robustness of the diffusion as a Gaussian fixed point with respect
to adding the structural complexity (disorder). In this case, a macroscopic
sample represents the disorder ensemble, i.e., the system is self-averaging
(38). Conversely, the absence of D∞, e.g., for fractals, near a percolation
threshold (2, 39), or for random drifts in one dimension (40, 41), signifies the
so-called anomalous diffusion (2) not considered here.

The general relation of the long-time behavior 2 and 3 to the mesoscopic
structure rests on the homogenization argument: at long diffusion time t,
the sample, as seen by random walkers traveling over a growing diffusion
length LðtÞ≡ Æδx2ðtÞæ1=2 ’

ffiffiffiffiffiffiffiffiffiffiffiffi
2D∞t

p
, appears increasingly more uniform due to

self-averaging. The sample is being effectively coarse-grained over LðtÞ, such
that the strong mesoscopic heterogeneity is gradually forgotten, and the
deviation δDðrÞ=DðrÞ−D∞ of the smoothly varying coarse-grained diffusion
coefficient DðrÞ from D∞ becomes small. This justifies calculating the self-
energy part of the disorder-averaged diffusion propagator only to the
lowest (second) order in the variable component δDðrÞ. Eventually, the
perturbative treatment around D∞ becomes asymptotically exact (as dis-
cussed in SI Text, Section I and Fig. S1) and the (small) deviation

DðωÞ−D∞

D∞
’ −

iω
D2

∞d

Z
ddk

ð2πÞd
ΓDðkÞ

−iω+D∞k2 [7]

is given in terms of the Fourier transform ΓDðkÞ=
R
ddr  e−ikr   ΓDðrÞ of the two-

point correlation function ΓDðrÞ= ÆδDðr0 + rÞδDðr0Þæ in d spatial dimensions.
Using the relation between DðωÞ and DinstðtÞ,

DinstðtÞ=
Z

dω
2π

e−iωt
DðωÞ

−iðω+ i0Þ [8]

(which can be derived using the cumulant expansion; cf. ref. 36), we obtain

DinstðtÞ−D∞ ’ 1
dD∞

Z
ddk

ð2πÞd
ΓDðkÞe−D∞k2t : [9]

Equivalently, the last equation can be recast in the form

DinstðtÞ ’ D∞ +
1

dD∞
· ÆðδDÞ2æjLðtÞ, [10]

where ÆðδDÞ2æjL is the variance of the Gaussian-smoothed values δDðrÞjL =R
ddr′  δDðr+ r′Þe−r′2=L2

.
ðπL2Þd=2. In other words, the diffusion effectively

applies a low-pass filter e−k
2L2=4 to the Fourier components of DðrÞ and, thus,

to its correlator ΓDðkÞ, admitting harmonics with progressively smaller
wavenumbers kK 1=LðtÞ. As the variance ÆðδDÞ2æjL ∼ L−2ϑ decreases due to
the smoothing, the measured diffusion coefficient DinstðtÞ monotonically
decreases toward D∞. The power law exponent 1 is then directly related to
the dimensionality d and to the exponent p which determines the k→ 0
behavior of ΓDðkÞ∼ kp.

We are interested in the spatial correlations ΓðrÞ= Ænðr0 + rÞnðr0Þæ of the
underlying mesoscopic structure nðrÞ responsible for the heterogeneity of
DðrÞ. Depending on the sample, nðrÞ may stand for the density of grains,
barriers, and other structural components that restrict diffusion (e.g., Figs. 1
and 2). This density is often strongly heterogeneous at the microscopic scale.
Certainly, the coarse-grained DðrÞ is not equal to the local average of the
strongly varying microscopic diffusion coefficient caused by nðrÞ. However,
the statistics of the large scale fluctuations of nðrÞ asymptotically approaches
that of the coarse-grained DðrÞ, such that for k→0

ΓDðkÞ ’ CðnÞ ·ΓðkÞ,  CðnÞ= ð∂D∞=∂nÞ2: [11]

This asymptotically local relation rests on the self-averaging assumption
which ensures the smooth dependence D∞ðnÞ on the sample mean n= ÆnðrÞæ
of the restrictions. Hence, after coarse-graining, a typical small local fluctu-
ation δDðrÞ ’ ð∂D∞=∂nÞδnðrÞ becomes asymptotically proportional to the
typical small local fluctuation δnðrÞ=nðrÞ−n, as long as the self-averaging
assumption holds. (Conversely, singular dependence D∞ðnÞ, e.g., at the

Fig. 5. Cumulative diffusion coefficient, Eq. 4, for the 1D example of Fig. 1.
Dashed lines correspond to the asymptotic power law decrease of DðtÞ. For
ϑ= 1=2 and ϑ= 3=8 (blue represents short-range disorder and magenta strong
disorder), the power law in DðtÞ coincides with that in DinstðtÞ (in accord with
Eq. 5) whereas for ϑ> 1 (red represents periodic and green hyperuniform), it
is masked by the 1=t term. Taking the derivative Dinst = ∂tðtDðtÞÞ reveals the
values of ϑ (as shown in Fig. 1) but increases noise.
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equivalent time- or frequency-dependent diffusion metrics, with rela-
tions between them described in refs. 36 and 37. To interpret various kinds
of diffusion measurements, such as dMRI results (17, 20), here we outline
how the power law tail 2 manifests itself in these metrics. We assume the
sample to be statistically isotropic, so that the diffusion metrics are isotropic
tensors, and the correlation functions depend on r = jrj and k= jkj. Gener-
alization to the anisotropic case presents no conceptual difficulty, but makes
the presentation more cumbersome.

The instantaneous diffusion coefficient DinstðtÞ defined in Eq. 3 is the nat-
ural metric to study structural correlations, as it quantifies how the spreading
of a packet of random walkers is hindered by the mesoscopic structure at the
time scale t. From our perspective, it is a perfect quantity to determine the
exponent ϑ. However, this is not the most commonly used metric in practice.

The most commonly reported diffusion coefficient

DðtÞ≡ Æδx2ðtÞæ
2t

=
1
t

Zt

0

Dinstðt′Þdt′ [4]

describes the dynamics of the cumulative, rather than instantaneous, mean-
squared displacement along a particular direction x̂ over the diffusion time t.
This is the case both in the dMRI (4, 17) and in the direct molecular tracking
techniques (3). This definition has a perceived advantage of dividing by time,
rather than differentiating with respect to it; clearly, differentiating increases
the noise, while dividing does not.

The definition 4 may mask the exponent ϑ. Indeed, its long t behavior

DðtÞ ’ D∞ + const · t−~ϑ,  ~ϑ=minfϑ,1g: [5]

In other words, for the tail 2 to be manifest in DðtÞ, it should be sufficiently
slow, ϑ≤ 1, so that it is unaffected by the averaging over the increasing in-
terval t in [4]. In the opposite case, ϑ> 1, the t−ϑ term in DinstðtÞ becomes
subleading to the 1=t term from the integral in [4] converging at short t.

Hence, to practically determine the dynamical exponent ϑ, one could first
check whether the fit to [5], using the less noisy definition 4, produces the value
~ϑ< 1. If it does (as in our example of diffusion transverse to muscle fibers), this is
the true value of ϑ= ~ϑ. In the opposite case, the fit would yield the 1=t tail, ~ϑ= 1,
which would mask the true value of ϑ> 1. Then, one must perform the differ-
entiation DinstðtÞ= ∂t ½tDðtÞ$ and obtain ϑ from the fit to [3], with the un-
fortunate effect of amplifying the measurement noise, as shown by comparing
Figs. 1 and 5. Practically, this results in more stringent requirements on the signal-
to-noise ratio and on the greater number of experimental time points.

There is another useful way of uncovering the exponent ϑ, as long as ϑ< 2,
without the need to take a time derivative. The same power law tail

ReDðωÞ≡ 1
2
Æv−ωvωæ ’ D∞ + const · jωjϑ,  ω→ 0, [6]

persists in the dispersive diffusivityDðωÞ≡
R∞
0 dt   eiωtDðtÞ, which is the Fourier

transform of the retarded velocity autocorrelator 2. The physical meaning of
DðωÞ is in relating the current Jω,r =−DðωÞ∇rψω;r of the random walkers to
their density gradient (36), somewhat similar to the dispersive electrical

conductivity; it defines the pole of the diffusion propagator (see refs. 13, 14,
16, 36, and 37 and also the discussion in SI Text, Section I). Fortunately, there
exists a dMRI measurement protocol, the oscillating gradient technique (4,
20), which directly measures (37) ReDðωÞ. This is the quantity used in the
example of diffusion in cerebral gray matter (Fig. 4).

Derivation of Eq. 1: Homogenization. In this work, we consider the most
widespread situation, when a sample has a nonzero macroscopic diffusion
constant D∞ ≡ ½Æδx2æ=2t$t→∞, i.e., the diffusion asymptotically becomes
normal, or Gaussian. A well-defined macroscopic D∞, observed in an over-
whelmingly broad variety of mesoscopically heterogeneous samples, attests
to the robustness of the diffusion as a Gaussian fixed point with respect
to adding the structural complexity (disorder). In this case, a macroscopic
sample represents the disorder ensemble, i.e., the system is self-averaging
(38). Conversely, the absence of D∞, e.g., for fractals, near a percolation
threshold (2, 39), or for random drifts in one dimension (40, 41), signifies the
so-called anomalous diffusion (2) not considered here.

The general relation of the long-time behavior 2 and 3 to the mesoscopic
structure rests on the homogenization argument: at long diffusion time t,
the sample, as seen by random walkers traveling over a growing diffusion
length LðtÞ≡ Æδx2ðtÞæ1=2 ’

ffiffiffiffiffiffiffiffiffiffiffiffi
2D∞t

p
, appears increasingly more uniform due to

self-averaging. The sample is being effectively coarse-grained over LðtÞ, such
that the strong mesoscopic heterogeneity is gradually forgotten, and the
deviation δDðrÞ=DðrÞ−D∞ of the smoothly varying coarse-grained diffusion
coefficient DðrÞ from D∞ becomes small. This justifies calculating the self-
energy part of the disorder-averaged diffusion propagator only to the
lowest (second) order in the variable component δDðrÞ. Eventually, the
perturbative treatment around D∞ becomes asymptotically exact (as dis-
cussed in SI Text, Section I and Fig. S1) and the (small) deviation

DðωÞ−D∞

D∞
’ −

iω
D2

∞d

Z
ddk

ð2πÞd
ΓDðkÞ

−iω+D∞k2 [7]

is given in terms of the Fourier transform ΓDðkÞ=
R
ddr  e−ikr   ΓDðrÞ of the two-

point correlation function ΓDðrÞ= ÆδDðr0 + rÞδDðr0Þæ in d spatial dimensions.
Using the relation between DðωÞ and DinstðtÞ,

DinstðtÞ=
Z

dω
2π

e−iωt
DðωÞ

−iðω+ i0Þ [8]

(which can be derived using the cumulant expansion; cf. ref. 36), we obtain

DinstðtÞ−D∞ ’ 1
dD∞

Z
ddk

ð2πÞd
ΓDðkÞe−D∞k2t : [9]

Equivalently, the last equation can be recast in the form

DinstðtÞ ’ D∞ +
1

dD∞
· ÆðδDÞ2æjLðtÞ, [10]

where ÆðδDÞ2æjL is the variance of the Gaussian-smoothed values δDðrÞjL =R
ddr′  δDðr+ r′Þe−r′2=L2

.
ðπL2Þd=2. In other words, the diffusion effectively

applies a low-pass filter e−k
2L2=4 to the Fourier components of DðrÞ and, thus,

to its correlator ΓDðkÞ, admitting harmonics with progressively smaller
wavenumbers kK 1=LðtÞ. As the variance ÆðδDÞ2æjL ∼ L−2ϑ decreases due to
the smoothing, the measured diffusion coefficient DinstðtÞ monotonically
decreases toward D∞. The power law exponent 1 is then directly related to
the dimensionality d and to the exponent p which determines the k→ 0
behavior of ΓDðkÞ∼ kp.

We are interested in the spatial correlations ΓðrÞ= Ænðr0 + rÞnðr0Þæ of the
underlying mesoscopic structure nðrÞ responsible for the heterogeneity of
DðrÞ. Depending on the sample, nðrÞ may stand for the density of grains,
barriers, and other structural components that restrict diffusion (e.g., Figs. 1
and 2). This density is often strongly heterogeneous at the microscopic scale.
Certainly, the coarse-grained DðrÞ is not equal to the local average of the
strongly varying microscopic diffusion coefficient caused by nðrÞ. However,
the statistics of the large scale fluctuations of nðrÞ asymptotically approaches
that of the coarse-grained DðrÞ, such that for k→0

ΓDðkÞ ’ CðnÞ ·ΓðkÞ,  CðnÞ= ð∂D∞=∂nÞ2: [11]

This asymptotically local relation rests on the self-averaging assumption
which ensures the smooth dependence D∞ðnÞ on the sample mean n= ÆnðrÞæ
of the restrictions. Hence, after coarse-graining, a typical small local fluctu-
ation δDðrÞ ’ ð∂D∞=∂nÞδnðrÞ becomes asymptotically proportional to the
typical small local fluctuation δnðrÞ=nðrÞ−n, as long as the self-averaging
assumption holds. (Conversely, singular dependence D∞ðnÞ, e.g., at the

Fig. 5. Cumulative diffusion coefficient, Eq. 4, for the 1D example of Fig. 1.
Dashed lines correspond to the asymptotic power law decrease of DðtÞ. For
ϑ= 1=2 and ϑ= 3=8 (blue represents short-range disorder and magenta strong
disorder), the power law in DðtÞ coincides with that in DinstðtÞ (in accord with
Eq. 5) whereas for ϑ> 1 (red represents periodic and green hyperuniform), it
is masked by the 1=t term. Taking the derivative Dinst = ∂tðtDðtÞÞ reveals the
values of ϑ (as shown in Fig. 1) but increases noise.
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SI Text
The outline of SI Text is as follows: section I provides details on
deriving the relation 7 in the main text Materials and Methods;
section II applies this result to derive exact asymptotic limits for
the d = 1 universality classes shown in Figs. 1 and 5; and section III
provides details for our analysis of time-dependent diffusion trans-
verse to muscle fibers.

I. Effective Medium Treatment of the Homogenized
Diffusion Equation
The entire premise of the long-time limit treatment is based on the
realization that diffusion effectively acts as an (almost Gaussian)
filter which gradually homogenizes the fine structure of a sample. In
other words, after coarse-graining over a sufficiently large diffusion
length LðtÞ, we are left with an effectively much simpler-looking
sample, characterized by the smoothly varying local diffusivity

DðrÞ=D+ δDðrÞ;  D≡ hDðrÞi [S1]

entering the homogenized diffusion equation

∂tψ =D∂2rψ + ∂rðδDðrÞ∂rψÞ [S2]

for the coarse-grained density ψðt; rÞ of the random walkers.
For our coarse-grained problem, we focus on the disorder-

averaged Green’s function Gt;r of Eq. S2, which is the funda-
mental solution averaged over the disorder realizations embodied
in the stochastic component δDðrÞ. The disorder-averaged Gt;r
becomes translation-invariant in both t and r due to the statisti-
cally uniform and stationary character of the disorder (1). This
naturally leads to the Fourier representation

Gω;q =
Z

dr  dt  eiωt−iqr  Gt;r =
1

−iω+Dq2 −Σðω; qÞ
[S3]

in the effective medium form (1, 2). The lowest-order contribu-
tion to the self-energy part Σðω; qÞ, up to OððδDÞ2Þ, reads

Σðω; qÞ ’
Z

ddk
ð2πÞd

 
½q · ðk+ qÞ$2ΓDðkÞ
−iω+Dðk+ qÞ2

: [S4]

To obtain Eqs. S3 and S4, one treats the last term of Eq. S2 as an
operator perturbation, Uψ = ∂rðδDðrÞ∂rψÞ, to the free diffusion
operator L0 = ∂t −D∂2r (Fig. S1A), then finds the Green’s func-
tion of Eq. S2 as an operator inverse (Fig. S1B)

ðL0 −UÞ−1 =Gð0Þ +Gð0ÞUGð0Þ +Gð0ÞUGð0ÞUGð0Þ + . . .

in terms of an infinite series in the powers ofU, whereGð0Þ ≡L−1
0 is

the free diffusion propagator; and subsequently averages this series
over the disorder term by term, which turns the powers of δDðrÞ
into the corresponding correlation functions. The smallness of the
ratio δDðrÞ=D ’ δDðrÞ=D∞, controlled by a negative power of the
increasing diffusion length LðtÞ, eventually warrants keeping only
the two-point correlators ΓDðr1 − r2Þ= hδDðr1ÞδDðr2Þi, and ap-
proximately factorizing higher-order correlators into products of
ΓD. Working in the Fourier domain, with Gð0Þ

ω;k = 1=ð−iω+Dk2Þ
and ΓDðkÞ=

R
dr  e−ikrΓDðrÞ, converts the above series into the

geometric series (Fig. S1B) in the powers of Σðω; qÞ given by
[S4], and schematically shown in Fig. S1C.

We now use Eqs. S3 and S4 to derive the ω→ 0, t→∞ be-
havior of the diffusion metrics. The most straightforward one is
the (retarded) dispersive diffusivity DðωÞ,

DðωÞ=
Z∞

0

eiωthvðtÞvð0Þidt [S5]

whose real part is the Fourier transform of the velocity autocorrela-
tor (compare with Eq. 6 of the main text). DðωÞ is determined
by the pole of the propagator S3: Dq2 −Σðω; qÞ≡DðωÞq2 +Oðq4Þ
(cf. ref. 1), such that the disorder-averaged effective diffusion equa-
tion becomes dispersive:

−iωψðω; rÞ=DðωÞ∂2rψðω; rÞ+O
!
∂4rψ

"
: [S6]

In particular, the macroscopic diffusion constant is just the
low frequency limit found from expanding Σ(0,q), Eq. S4, up
to q2:

D∞ ≡DðωÞjω=0 ’ D−
1
d

Z
ddk
ð2πÞd

 
ΓDðkÞ
D

≡D−
1
d

D
ðδDÞ2

E

D
’ D−

1
d

D
ðδDÞ2

E

D∞
:

[S7]

Here hðδDÞ2i is the sample variance of the variable component
of DðrÞ (Eq. S1). Above we also used ðq · kÞ2 → q2k2=d in d di-
mensions for the isotropic ΓDðkÞ after the angular integration.
From now on, we will express everything in terms of the mac-

roscopic limit D∞ instead of D. For that, we will use the fact that
these quantities differ only by OððδDÞ2Þ (compare with Eq. S7)
and, therefore, their difference can be neglected in all terms where
ΓD enters, e.g., in the last term of Eq. S7, within our chosen ac-
curacy. This also applies to the correlator ΓD itself: within our
accuracy, the variable component δDðrÞ→DðrÞ−D∞ entering ΓD
can be effectively counted relative to D∞ rather than to the mean
D, which is why we have defined it in this way in the main text.
Hence, we obtain

Gω;q =
1

−iω+D∞q2 − δΣðω; qÞ
; [S8]

δΣðω; qÞ= iω  q2

D∞d

Z
ddk
ð2πÞd

ΓDðkÞ
−iω+D∞k2

+O
!
q4
"
: [S9]

Here we expanded the self-energy part S4 up to q2, subtracted its
ω= 0 contribution that renormalizes D→D∞ such that δΣ =
Σ−Σjω=0, and substituted D→D∞ in the denominator under
the integral in Eq. S9 since δΣ is already an OððδDÞ2Þ correction.
Essentially, this amounts to using the macroscopic limit of the free
diffusion propagator, Gð0Þ → 1=ð−iω+D∞q2Þ, inside the Feynman
diagram in Fig. S1C. Collecting the ∼ q2 terms in the denominator
of Eq. S8, we obtain the asymptotically exact dispersive correction
to D∞ given by Eq. 7 of the main text.

II. One-Dimensional Disorder Universality Classes
Here we provide the derivation of the asymptotic results which
we confirm with Monte Carlo (MC) simulations in Figs. 1 and 5.
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equivalent time- or frequency-dependent diffusion metrics, with rela-
tions between them described in refs. 36 and 37. To interpret various kinds
of diffusion measurements, such as dMRI results (17, 20), here we outline
how the power law tail 2 manifests itself in these metrics. We assume the
sample to be statistically isotropic, so that the diffusion metrics are isotropic
tensors, and the correlation functions depend on r = jrj and k= jkj. Gener-
alization to the anisotropic case presents no conceptual difficulty, but makes
the presentation more cumbersome.

The instantaneous diffusion coefficient DinstðtÞ defined in Eq. 3 is the nat-
ural metric to study structural correlations, as it quantifies how the spreading
of a packet of random walkers is hindered by the mesoscopic structure at the
time scale t. From our perspective, it is a perfect quantity to determine the
exponent ϑ. However, this is not the most commonly used metric in practice.

The most commonly reported diffusion coefficient

DðtÞ≡ Æδx2ðtÞæ
2t

=
1
t

Zt

0

Dinstðt′Þdt′ [4]

describes the dynamics of the cumulative, rather than instantaneous, mean-
squared displacement along a particular direction x̂ over the diffusion time t.
This is the case both in the dMRI (4, 17) and in the direct molecular tracking
techniques (3). This definition has a perceived advantage of dividing by time,
rather than differentiating with respect to it; clearly, differentiating increases
the noise, while dividing does not.

The definition 4 may mask the exponent ϑ. Indeed, its long t behavior

DðtÞ ’ D∞ + const · t−~ϑ,  ~ϑ=minfϑ,1g: [5]

In other words, for the tail 2 to be manifest in DðtÞ, it should be sufficiently
slow, ϑ≤ 1, so that it is unaffected by the averaging over the increasing in-
terval t in [4]. In the opposite case, ϑ> 1, the t−ϑ term in DinstðtÞ becomes
subleading to the 1=t term from the integral in [4] converging at short t.

Hence, to practically determine the dynamical exponent ϑ, one could first
check whether the fit to [5], using the less noisy definition 4, produces the value
~ϑ< 1. If it does (as in our example of diffusion transverse to muscle fibers), this is
the true value of ϑ= ~ϑ. In the opposite case, the fit would yield the 1=t tail, ~ϑ= 1,
which would mask the true value of ϑ> 1. Then, one must perform the differ-
entiation DinstðtÞ= ∂t ½tDðtÞ$ and obtain ϑ from the fit to [3], with the un-
fortunate effect of amplifying the measurement noise, as shown by comparing
Figs. 1 and 5. Practically, this results in more stringent requirements on the signal-
to-noise ratio and on the greater number of experimental time points.

There is another useful way of uncovering the exponent ϑ, as long as ϑ< 2,
without the need to take a time derivative. The same power law tail

ReDðωÞ≡ 1
2
Æv−ωvωæ ’ D∞ + const · jωjϑ,  ω→ 0, [6]

persists in the dispersive diffusivityDðωÞ≡
R∞
0 dt   eiωtDðtÞ, which is the Fourier

transform of the retarded velocity autocorrelator 2. The physical meaning of
DðωÞ is in relating the current Jω,r =−DðωÞ∇rψω;r of the random walkers to
their density gradient (36), somewhat similar to the dispersive electrical

conductivity; it defines the pole of the diffusion propagator (see refs. 13, 14,
16, 36, and 37 and also the discussion in SI Text, Section I). Fortunately, there
exists a dMRI measurement protocol, the oscillating gradient technique (4,
20), which directly measures (37) ReDðωÞ. This is the quantity used in the
example of diffusion in cerebral gray matter (Fig. 4).

Derivation of Eq. 1: Homogenization. In this work, we consider the most
widespread situation, when a sample has a nonzero macroscopic diffusion
constant D∞ ≡ ½Æδx2æ=2t$t→∞, i.e., the diffusion asymptotically becomes
normal, or Gaussian. A well-defined macroscopic D∞, observed in an over-
whelmingly broad variety of mesoscopically heterogeneous samples, attests
to the robustness of the diffusion as a Gaussian fixed point with respect
to adding the structural complexity (disorder). In this case, a macroscopic
sample represents the disorder ensemble, i.e., the system is self-averaging
(38). Conversely, the absence of D∞, e.g., for fractals, near a percolation
threshold (2, 39), or for random drifts in one dimension (40, 41), signifies the
so-called anomalous diffusion (2) not considered here.

The general relation of the long-time behavior 2 and 3 to the mesoscopic
structure rests on the homogenization argument: at long diffusion time t,
the sample, as seen by random walkers traveling over a growing diffusion
length LðtÞ≡ Æδx2ðtÞæ1=2 ’

ffiffiffiffiffiffiffiffiffiffiffiffi
2D∞t

p
, appears increasingly more uniform due to

self-averaging. The sample is being effectively coarse-grained over LðtÞ, such
that the strong mesoscopic heterogeneity is gradually forgotten, and the
deviation δDðrÞ=DðrÞ−D∞ of the smoothly varying coarse-grained diffusion
coefficient DðrÞ from D∞ becomes small. This justifies calculating the self-
energy part of the disorder-averaged diffusion propagator only to the
lowest (second) order in the variable component δDðrÞ. Eventually, the
perturbative treatment around D∞ becomes asymptotically exact (as dis-
cussed in SI Text, Section I and Fig. S1) and the (small) deviation

DðωÞ−D∞

D∞
’ −

iω
D2

∞d

Z
ddk

ð2πÞd
ΓDðkÞ

−iω+D∞k2 [7]

is given in terms of the Fourier transform ΓDðkÞ=
R
ddr  e−ikr   ΓDðrÞ of the two-

point correlation function ΓDðrÞ= ÆδDðr0 + rÞδDðr0Þæ in d spatial dimensions.
Using the relation between DðωÞ and DinstðtÞ,

DinstðtÞ=
Z

dω
2π

e−iωt
DðωÞ

−iðω+ i0Þ [8]

(which can be derived using the cumulant expansion; cf. ref. 36), we obtain

DinstðtÞ−D∞ ’ 1
dD∞

Z
ddk

ð2πÞd
ΓDðkÞe−D∞k2t : [9]

Equivalently, the last equation can be recast in the form

DinstðtÞ ’ D∞ +
1

dD∞
· ÆðδDÞ2æjLðtÞ, [10]

where ÆðδDÞ2æjL is the variance of the Gaussian-smoothed values δDðrÞjL =R
ddr′  δDðr+ r′Þe−r′2=L2

.
ðπL2Þd=2. In other words, the diffusion effectively

applies a low-pass filter e−k
2L2=4 to the Fourier components of DðrÞ and, thus,

to its correlator ΓDðkÞ, admitting harmonics with progressively smaller
wavenumbers kK 1=LðtÞ. As the variance ÆðδDÞ2æjL ∼ L−2ϑ decreases due to
the smoothing, the measured diffusion coefficient DinstðtÞ monotonically
decreases toward D∞. The power law exponent 1 is then directly related to
the dimensionality d and to the exponent p which determines the k→ 0
behavior of ΓDðkÞ∼ kp.

We are interested in the spatial correlations ΓðrÞ= Ænðr0 + rÞnðr0Þæ of the
underlying mesoscopic structure nðrÞ responsible for the heterogeneity of
DðrÞ. Depending on the sample, nðrÞ may stand for the density of grains,
barriers, and other structural components that restrict diffusion (e.g., Figs. 1
and 2). This density is often strongly heterogeneous at the microscopic scale.
Certainly, the coarse-grained DðrÞ is not equal to the local average of the
strongly varying microscopic diffusion coefficient caused by nðrÞ. However,
the statistics of the large scale fluctuations of nðrÞ asymptotically approaches
that of the coarse-grained DðrÞ, such that for k→0

ΓDðkÞ ’ CðnÞ ·ΓðkÞ,  CðnÞ= ð∂D∞=∂nÞ2: [11]

This asymptotically local relation rests on the self-averaging assumption
which ensures the smooth dependence D∞ðnÞ on the sample mean n= ÆnðrÞæ
of the restrictions. Hence, after coarse-graining, a typical small local fluctu-
ation δDðrÞ ’ ð∂D∞=∂nÞδnðrÞ becomes asymptotically proportional to the
typical small local fluctuation δnðrÞ=nðrÞ−n, as long as the self-averaging
assumption holds. (Conversely, singular dependence D∞ðnÞ, e.g., at the

Fig. 5. Cumulative diffusion coefficient, Eq. 4, for the 1D example of Fig. 1.
Dashed lines correspond to the asymptotic power law decrease of DðtÞ. For
ϑ= 1=2 and ϑ= 3=8 (blue represents short-range disorder and magenta strong
disorder), the power law in DðtÞ coincides with that in DinstðtÞ (in accord with
Eq. 5) whereas for ϑ> 1 (red represents periodic and green hyperuniform), it
is masked by the 1=t term. Taking the derivative Dinst = ∂tðtDðtÞÞ reveals the
values of ϑ (as shown in Fig. 1) but increases noise.
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• Expand	self-energy	part	up	to	q2;	
obtain	effective	D(ω) as a pole of the propagator

equivalent time- or frequency-dependent diffusion metrics, with rela-
tions between them described in refs. 36 and 37. To interpret various kinds
of diffusion measurements, such as dMRI results (17, 20), here we outline
how the power law tail 2 manifests itself in these metrics. We assume the
sample to be statistically isotropic, so that the diffusion metrics are isotropic
tensors, and the correlation functions depend on r = jrj and k= jkj. Gener-
alization to the anisotropic case presents no conceptual difficulty, but makes
the presentation more cumbersome.

The instantaneous diffusion coefficient DinstðtÞ defined in Eq. 3 is the nat-
ural metric to study structural correlations, as it quantifies how the spreading
of a packet of random walkers is hindered by the mesoscopic structure at the
time scale t. From our perspective, it is a perfect quantity to determine the
exponent ϑ. However, this is not the most commonly used metric in practice.

The most commonly reported diffusion coefficient

DðtÞ≡ Æδx2ðtÞæ
2t

=
1
t

Zt

0

Dinstðt′Þdt′ [4]

describes the dynamics of the cumulative, rather than instantaneous, mean-
squared displacement along a particular direction x̂ over the diffusion time t.
This is the case both in the dMRI (4, 17) and in the direct molecular tracking
techniques (3). This definition has a perceived advantage of dividing by time,
rather than differentiating with respect to it; clearly, differentiating increases
the noise, while dividing does not.

The definition 4 may mask the exponent ϑ. Indeed, its long t behavior

DðtÞ ’ D∞ + const · t−~ϑ,  ~ϑ=minfϑ,1g: [5]

In other words, for the tail 2 to be manifest in DðtÞ, it should be sufficiently
slow, ϑ≤ 1, so that it is unaffected by the averaging over the increasing in-
terval t in [4]. In the opposite case, ϑ> 1, the t−ϑ term in DinstðtÞ becomes
subleading to the 1=t term from the integral in [4] converging at short t.

Hence, to practically determine the dynamical exponent ϑ, one could first
check whether the fit to [5], using the less noisy definition 4, produces the value
~ϑ< 1. If it does (as in our example of diffusion transverse to muscle fibers), this is
the true value of ϑ= ~ϑ. In the opposite case, the fit would yield the 1=t tail, ~ϑ= 1,
which would mask the true value of ϑ> 1. Then, one must perform the differ-
entiation DinstðtÞ= ∂t ½tDðtÞ$ and obtain ϑ from the fit to [3], with the un-
fortunate effect of amplifying the measurement noise, as shown by comparing
Figs. 1 and 5. Practically, this results in more stringent requirements on the signal-
to-noise ratio and on the greater number of experimental time points.

There is another useful way of uncovering the exponent ϑ, as long as ϑ< 2,
without the need to take a time derivative. The same power law tail

ReDðωÞ≡ 1
2
Æv−ωvωæ ’ D∞ + const · jωjϑ,  ω→ 0, [6]

persists in the dispersive diffusivityDðωÞ≡
R∞
0 dt   eiωtDðtÞ, which is the Fourier

transform of the retarded velocity autocorrelator 2. The physical meaning of
DðωÞ is in relating the current Jω,r =−DðωÞ∇rψω;r of the random walkers to
their density gradient (36), somewhat similar to the dispersive electrical

conductivity; it defines the pole of the diffusion propagator (see refs. 13, 14,
16, 36, and 37 and also the discussion in SI Text, Section I). Fortunately, there
exists a dMRI measurement protocol, the oscillating gradient technique (4,
20), which directly measures (37) ReDðωÞ. This is the quantity used in the
example of diffusion in cerebral gray matter (Fig. 4).

Derivation of Eq. 1: Homogenization. In this work, we consider the most
widespread situation, when a sample has a nonzero macroscopic diffusion
constant D∞ ≡ ½Æδx2æ=2t$t→∞, i.e., the diffusion asymptotically becomes
normal, or Gaussian. A well-defined macroscopic D∞, observed in an over-
whelmingly broad variety of mesoscopically heterogeneous samples, attests
to the robustness of the diffusion as a Gaussian fixed point with respect
to adding the structural complexity (disorder). In this case, a macroscopic
sample represents the disorder ensemble, i.e., the system is self-averaging
(38). Conversely, the absence of D∞, e.g., for fractals, near a percolation
threshold (2, 39), or for random drifts in one dimension (40, 41), signifies the
so-called anomalous diffusion (2) not considered here.

The general relation of the long-time behavior 2 and 3 to the mesoscopic
structure rests on the homogenization argument: at long diffusion time t,
the sample, as seen by random walkers traveling over a growing diffusion
length LðtÞ≡ Æδx2ðtÞæ1=2 ’

ffiffiffiffiffiffiffiffiffiffiffiffi
2D∞t

p
, appears increasingly more uniform due to

self-averaging. The sample is being effectively coarse-grained over LðtÞ, such
that the strong mesoscopic heterogeneity is gradually forgotten, and the
deviation δDðrÞ=DðrÞ−D∞ of the smoothly varying coarse-grained diffusion
coefficient DðrÞ from D∞ becomes small. This justifies calculating the self-
energy part of the disorder-averaged diffusion propagator only to the
lowest (second) order in the variable component δDðrÞ. Eventually, the
perturbative treatment around D∞ becomes asymptotically exact (as dis-
cussed in SI Text, Section I and Fig. S1) and the (small) deviation

DðωÞ−D∞

D∞
’ −

iω
D2

∞d

Z
ddk

ð2πÞd
ΓDðkÞ

−iω+D∞k2 [7]

is given in terms of the Fourier transform ΓDðkÞ=
R
ddr  e−ikr   ΓDðrÞ of the two-

point correlation function ΓDðrÞ= ÆδDðr0 + rÞδDðr0Þæ in d spatial dimensions.
Using the relation between DðωÞ and DinstðtÞ,

DinstðtÞ=
Z

dω
2π

e−iωt
DðωÞ

−iðω+ i0Þ [8]

(which can be derived using the cumulant expansion; cf. ref. 36), we obtain

DinstðtÞ−D∞ ’ 1
dD∞

Z
ddk

ð2πÞd
ΓDðkÞe−D∞k2t : [9]

Equivalently, the last equation can be recast in the form

DinstðtÞ ’ D∞ +
1

dD∞
· ÆðδDÞ2æjLðtÞ, [10]

where ÆðδDÞ2æjL is the variance of the Gaussian-smoothed values δDðrÞjL =R
ddr′  δDðr+ r′Þe−r′2=L2

.
ðπL2Þd=2. In other words, the diffusion effectively

applies a low-pass filter e−k
2L2=4 to the Fourier components of DðrÞ and, thus,

to its correlator ΓDðkÞ, admitting harmonics with progressively smaller
wavenumbers kK 1=LðtÞ. As the variance ÆðδDÞ2æjL ∼ L−2ϑ decreases due to
the smoothing, the measured diffusion coefficient DinstðtÞ monotonically
decreases toward D∞. The power law exponent 1 is then directly related to
the dimensionality d and to the exponent p which determines the k→ 0
behavior of ΓDðkÞ∼ kp.

We are interested in the spatial correlations ΓðrÞ= Ænðr0 + rÞnðr0Þæ of the
underlying mesoscopic structure nðrÞ responsible for the heterogeneity of
DðrÞ. Depending on the sample, nðrÞ may stand for the density of grains,
barriers, and other structural components that restrict diffusion (e.g., Figs. 1
and 2). This density is often strongly heterogeneous at the microscopic scale.
Certainly, the coarse-grained DðrÞ is not equal to the local average of the
strongly varying microscopic diffusion coefficient caused by nðrÞ. However,
the statistics of the large scale fluctuations of nðrÞ asymptotically approaches
that of the coarse-grained DðrÞ, such that for k→0

ΓDðkÞ ’ CðnÞ ·ΓðkÞ,  CðnÞ= ð∂D∞=∂nÞ2: [11]

This asymptotically local relation rests on the self-averaging assumption
which ensures the smooth dependence D∞ðnÞ on the sample mean n= ÆnðrÞæ
of the restrictions. Hence, after coarse-graining, a typical small local fluctu-
ation δDðrÞ ’ ð∂D∞=∂nÞδnðrÞ becomes asymptotically proportional to the
typical small local fluctuation δnðrÞ=nðrÞ−n, as long as the self-averaging
assumption holds. (Conversely, singular dependence D∞ðnÞ, e.g., at the

Fig. 5. Cumulative diffusion coefficient, Eq. 4, for the 1D example of Fig. 1.
Dashed lines correspond to the asymptotic power law decrease of DðtÞ. For
ϑ= 1=2 and ϑ= 3=8 (blue represents short-range disorder and magenta strong
disorder), the power law in DðtÞ coincides with that in DinstðtÞ (in accord with
Eq. 5) whereas for ϑ> 1 (red represents periodic and green hyperuniform), it
is masked by the 1=t term. Taking the derivative Dinst = ∂tðtDðtÞÞ reveals the
values of ϑ (as shown in Fig. 1) but increases noise.
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• In	the	time	domain,	

equivalent time- or frequency-dependent diffusion metrics, with rela-
tions between them described in refs. 36 and 37. To interpret various kinds
of diffusion measurements, such as dMRI results (17, 20), here we outline
how the power law tail 2 manifests itself in these metrics. We assume the
sample to be statistically isotropic, so that the diffusion metrics are isotropic
tensors, and the correlation functions depend on r = jrj and k= jkj. Gener-
alization to the anisotropic case presents no conceptual difficulty, but makes
the presentation more cumbersome.

The instantaneous diffusion coefficient DinstðtÞ defined in Eq. 3 is the nat-
ural metric to study structural correlations, as it quantifies how the spreading
of a packet of random walkers is hindered by the mesoscopic structure at the
time scale t. From our perspective, it is a perfect quantity to determine the
exponent ϑ. However, this is not the most commonly used metric in practice.

The most commonly reported diffusion coefficient

DðtÞ≡ Æδx2ðtÞæ
2t

=
1
t

Zt

0

Dinstðt′Þdt′ [4]

describes the dynamics of the cumulative, rather than instantaneous, mean-
squared displacement along a particular direction x̂ over the diffusion time t.
This is the case both in the dMRI (4, 17) and in the direct molecular tracking
techniques (3). This definition has a perceived advantage of dividing by time,
rather than differentiating with respect to it; clearly, differentiating increases
the noise, while dividing does not.

The definition 4 may mask the exponent ϑ. Indeed, its long t behavior

DðtÞ ’ D∞ + const · t−~ϑ,  ~ϑ=minfϑ,1g: [5]

In other words, for the tail 2 to be manifest in DðtÞ, it should be sufficiently
slow, ϑ≤ 1, so that it is unaffected by the averaging over the increasing in-
terval t in [4]. In the opposite case, ϑ> 1, the t−ϑ term in DinstðtÞ becomes
subleading to the 1=t term from the integral in [4] converging at short t.

Hence, to practically determine the dynamical exponent ϑ, one could first
check whether the fit to [5], using the less noisy definition 4, produces the value
~ϑ< 1. If it does (as in our example of diffusion transverse to muscle fibers), this is
the true value of ϑ= ~ϑ. In the opposite case, the fit would yield the 1=t tail, ~ϑ= 1,
which would mask the true value of ϑ> 1. Then, one must perform the differ-
entiation DinstðtÞ= ∂t ½tDðtÞ$ and obtain ϑ from the fit to [3], with the un-
fortunate effect of amplifying the measurement noise, as shown by comparing
Figs. 1 and 5. Practically, this results in more stringent requirements on the signal-
to-noise ratio and on the greater number of experimental time points.

There is another useful way of uncovering the exponent ϑ, as long as ϑ< 2,
without the need to take a time derivative. The same power law tail

ReDðωÞ≡ 1
2
Æv−ωvωæ ’ D∞ + const · jωjϑ,  ω→ 0, [6]

persists in the dispersive diffusivityDðωÞ≡
R∞
0 dt   eiωtDðtÞ, which is the Fourier

transform of the retarded velocity autocorrelator 2. The physical meaning of
DðωÞ is in relating the current Jω,r =−DðωÞ∇rψω;r of the random walkers to
their density gradient (36), somewhat similar to the dispersive electrical

conductivity; it defines the pole of the diffusion propagator (see refs. 13, 14,
16, 36, and 37 and also the discussion in SI Text, Section I). Fortunately, there
exists a dMRI measurement protocol, the oscillating gradient technique (4,
20), which directly measures (37) ReDðωÞ. This is the quantity used in the
example of diffusion in cerebral gray matter (Fig. 4).

Derivation of Eq. 1: Homogenization. In this work, we consider the most
widespread situation, when a sample has a nonzero macroscopic diffusion
constant D∞ ≡ ½Æδx2æ=2t$t→∞, i.e., the diffusion asymptotically becomes
normal, or Gaussian. A well-defined macroscopic D∞, observed in an over-
whelmingly broad variety of mesoscopically heterogeneous samples, attests
to the robustness of the diffusion as a Gaussian fixed point with respect
to adding the structural complexity (disorder). In this case, a macroscopic
sample represents the disorder ensemble, i.e., the system is self-averaging
(38). Conversely, the absence of D∞, e.g., for fractals, near a percolation
threshold (2, 39), or for random drifts in one dimension (40, 41), signifies the
so-called anomalous diffusion (2) not considered here.

The general relation of the long-time behavior 2 and 3 to the mesoscopic
structure rests on the homogenization argument: at long diffusion time t,
the sample, as seen by random walkers traveling over a growing diffusion
length LðtÞ≡ Æδx2ðtÞæ1=2 ’

ffiffiffiffiffiffiffiffiffiffiffiffi
2D∞t

p
, appears increasingly more uniform due to

self-averaging. The sample is being effectively coarse-grained over LðtÞ, such
that the strong mesoscopic heterogeneity is gradually forgotten, and the
deviation δDðrÞ=DðrÞ−D∞ of the smoothly varying coarse-grained diffusion
coefficient DðrÞ from D∞ becomes small. This justifies calculating the self-
energy part of the disorder-averaged diffusion propagator only to the
lowest (second) order in the variable component δDðrÞ. Eventually, the
perturbative treatment around D∞ becomes asymptotically exact (as dis-
cussed in SI Text, Section I and Fig. S1) and the (small) deviation
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iω
D2
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Z
ddk

ð2πÞd
ΓDðkÞ

−iω+D∞k2 [7]

is given in terms of the Fourier transform ΓDðkÞ=
R
ddr  e−ikr   ΓDðrÞ of the two-

point correlation function ΓDðrÞ= ÆδDðr0 + rÞδDðr0Þæ in d spatial dimensions.
Using the relation between DðωÞ and DinstðtÞ,

DinstðtÞ=
Z

dω
2π

e−iωt
DðωÞ

−iðω+ i0Þ [8]

(which can be derived using the cumulant expansion; cf. ref. 36), we obtain

DinstðtÞ−D∞ ’ 1
dD∞

Z
ddk

ð2πÞd
ΓDðkÞe−D∞k2t : [9]

Equivalently, the last equation can be recast in the form

DinstðtÞ ’ D∞ +
1

dD∞
· ÆðδDÞ2æjLðtÞ, [10]

where ÆðδDÞ2æjL is the variance of the Gaussian-smoothed values δDðrÞjL =R
ddr′  δDðr+ r′Þe−r′2=L2

.
ðπL2Þd=2. In other words, the diffusion effectively

applies a low-pass filter e−k
2L2=4 to the Fourier components of DðrÞ and, thus,

to its correlator ΓDðkÞ, admitting harmonics with progressively smaller
wavenumbers kK 1=LðtÞ. As the variance ÆðδDÞ2æjL ∼ L−2ϑ decreases due to
the smoothing, the measured diffusion coefficient DinstðtÞ monotonically
decreases toward D∞. The power law exponent 1 is then directly related to
the dimensionality d and to the exponent p which determines the k→ 0
behavior of ΓDðkÞ∼ kp.

We are interested in the spatial correlations ΓðrÞ= Ænðr0 + rÞnðr0Þæ of the
underlying mesoscopic structure nðrÞ responsible for the heterogeneity of
DðrÞ. Depending on the sample, nðrÞ may stand for the density of grains,
barriers, and other structural components that restrict diffusion (e.g., Figs. 1
and 2). This density is often strongly heterogeneous at the microscopic scale.
Certainly, the coarse-grained DðrÞ is not equal to the local average of the
strongly varying microscopic diffusion coefficient caused by nðrÞ. However,
the statistics of the large scale fluctuations of nðrÞ asymptotically approaches
that of the coarse-grained DðrÞ, such that for k→0

ΓDðkÞ ’ CðnÞ ·ΓðkÞ,  CðnÞ= ð∂D∞=∂nÞ2: [11]

This asymptotically local relation rests on the self-averaging assumption
which ensures the smooth dependence D∞ðnÞ on the sample mean n= ÆnðrÞæ
of the restrictions. Hence, after coarse-graining, a typical small local fluctu-
ation δDðrÞ ’ ð∂D∞=∂nÞδnðrÞ becomes asymptotically proportional to the
typical small local fluctuation δnðrÞ=nðrÞ−n, as long as the self-averaging
assumption holds. (Conversely, singular dependence D∞ðnÞ, e.g., at the

Fig. 5. Cumulative diffusion coefficient, Eq. 4, for the 1D example of Fig. 1.
Dashed lines correspond to the asymptotic power law decrease of DðtÞ. For
ϑ= 1=2 and ϑ= 3=8 (blue represents short-range disorder and magenta strong
disorder), the power law in DðtÞ coincides with that in DinstðtÞ (in accord with
Eq. 5) whereas for ϑ> 1 (red represents periodic and green hyperuniform), it
is masked by the 1=t term. Taking the derivative Dinst = ∂tðtDðtÞÞ reveals the
values of ϑ (as shown in Fig. 1) but increases noise.
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equivalent time- or frequency-dependent diffusion metrics, with rela-
tions between them described in refs. 36 and 37. To interpret various kinds
of diffusion measurements, such as dMRI results (17, 20), here we outline
how the power law tail 2 manifests itself in these metrics. We assume the
sample to be statistically isotropic, so that the diffusion metrics are isotropic
tensors, and the correlation functions depend on r = jrj and k= jkj. Gener-
alization to the anisotropic case presents no conceptual difficulty, but makes
the presentation more cumbersome.

The instantaneous diffusion coefficient DinstðtÞ defined in Eq. 3 is the nat-
ural metric to study structural correlations, as it quantifies how the spreading
of a packet of random walkers is hindered by the mesoscopic structure at the
time scale t. From our perspective, it is a perfect quantity to determine the
exponent ϑ. However, this is not the most commonly used metric in practice.

The most commonly reported diffusion coefficient

DðtÞ≡ Æδx2ðtÞæ
2t

=
1
t

Zt

0

Dinstðt′Þdt′ [4]

describes the dynamics of the cumulative, rather than instantaneous, mean-
squared displacement along a particular direction x̂ over the diffusion time t.
This is the case both in the dMRI (4, 17) and in the direct molecular tracking
techniques (3). This definition has a perceived advantage of dividing by time,
rather than differentiating with respect to it; clearly, differentiating increases
the noise, while dividing does not.

The definition 4 may mask the exponent ϑ. Indeed, its long t behavior

DðtÞ ’ D∞ + const · t−~ϑ,  ~ϑ=minfϑ,1g: [5]
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the true value of ϑ= ~ϑ. In the opposite case, the fit would yield the 1=t tail, ~ϑ= 1,
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without the need to take a time derivative. The same power law tail

ReDðωÞ≡ 1
2
Æv−ωvωæ ’ D∞ + const · jωjϑ,  ω→ 0, [6]

persists in the dispersive diffusivityDðωÞ≡
R∞
0 dt   eiωtDðtÞ, which is the Fourier

transform of the retarded velocity autocorrelator 2. The physical meaning of
DðωÞ is in relating the current Jω,r =−DðωÞ∇rψω;r of the random walkers to
their density gradient (36), somewhat similar to the dispersive electrical

conductivity; it defines the pole of the diffusion propagator (see refs. 13, 14,
16, 36, and 37 and also the discussion in SI Text, Section I). Fortunately, there
exists a dMRI measurement protocol, the oscillating gradient technique (4,
20), which directly measures (37) ReDðωÞ. This is the quantity used in the
example of diffusion in cerebral gray matter (Fig. 4).
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threshold (2, 39), or for random drifts in one dimension (40, 41), signifies the
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the sample, as seen by random walkers traveling over a growing diffusion
length LðtÞ≡ Æδx2ðtÞæ1=2 ’
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self-averaging. The sample is being effectively coarse-grained over LðtÞ, such
that the strong mesoscopic heterogeneity is gradually forgotten, and the
deviation δDðrÞ=DðrÞ−D∞ of the smoothly varying coarse-grained diffusion
coefficient DðrÞ from D∞ becomes small. This justifies calculating the self-
energy part of the disorder-averaged diffusion propagator only to the
lowest (second) order in the variable component δDðrÞ. Eventually, the
perturbative treatment around D∞ becomes asymptotically exact (as dis-
cussed in SI Text, Section I and Fig. S1) and the (small) deviation
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to its correlator ΓDðkÞ, admitting harmonics with progressively smaller
wavenumbers kK 1=LðtÞ. As the variance ÆðδDÞ2æjL ∼ L−2ϑ decreases due to
the smoothing, the measured diffusion coefficient DinstðtÞ monotonically
decreases toward D∞. The power law exponent 1 is then directly related to
the dimensionality d and to the exponent p which determines the k→ 0
behavior of ΓDðkÞ∼ kp.

We are interested in the spatial correlations ΓðrÞ= Ænðr0 + rÞnðr0Þæ of the
underlying mesoscopic structure nðrÞ responsible for the heterogeneity of
DðrÞ. Depending on the sample, nðrÞ may stand for the density of grains,
barriers, and other structural components that restrict diffusion (e.g., Figs. 1
and 2). This density is often strongly heterogeneous at the microscopic scale.
Certainly, the coarse-grained DðrÞ is not equal to the local average of the
strongly varying microscopic diffusion coefficient caused by nðrÞ. However,
the statistics of the large scale fluctuations of nðrÞ asymptotically approaches
that of the coarse-grained DðrÞ, such that for k→0

ΓDðkÞ ’ CðnÞ ·ΓðkÞ,  CðnÞ= ð∂D∞=∂nÞ2: [11]

This asymptotically local relation rests on the self-averaging assumption
which ensures the smooth dependence D∞ðnÞ on the sample mean n= ÆnðrÞæ
of the restrictions. Hence, after coarse-graining, a typical small local fluctu-
ation δDðrÞ ’ ð∂D∞=∂nÞδnðrÞ becomes asymptotically proportional to the
typical small local fluctuation δnðrÞ=nðrÞ−n, as long as the self-averaging
assumption holds. (Conversely, singular dependence D∞ðnÞ, e.g., at the

Fig. 5. Cumulative diffusion coefficient, Eq. 4, for the 1D example of Fig. 1.
Dashed lines correspond to the asymptotic power law decrease of DðtÞ. For
ϑ= 1=2 and ϑ= 3=8 (blue represents short-range disorder and magenta strong
disorder), the power law in DðtÞ coincides with that in DinstðtÞ (in accord with
Eq. 5) whereas for ϑ> 1 (red represents periodic and green hyperuniform), it
is masked by the 1=t term. Taking the derivative Dinst = ∂tðtDðtÞÞ reveals the
values of ϑ (as shown in Fig. 1) but increases noise.
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FIG. 2. Dynamical exponent (1) identifies the disorder classes. a, The tail in the cumulative diffusion coefficient D(t) (see text) distinguishes
between SR and HU disorder, via exponent ˜

# = min {#, 1} (Table I). Note that ˜

# ⌘ # ⇡ 1/2 for both SR samples (made of barriers with
different permeability), while ˜

# ⇡ 1 for the HU sample, indicating that the “true” # > 1. D(t) = const for unrestricted water is shown
for comparison. b, To access # for HU disorder, we obtain the tail in Dinst(t), equation (2). While results are noisier due to numerical
differentiation, the exponent values # ⇡ 1/2 for SR and # ⇡ 3/2 for HU, cf. Table I, are consistent with equation (1).

rents. To mitigate such effects, two pulse sequences were used
for the diffusion measurements (cf. Supplementary Materials)
which made use of bipolar gradient pulses for short times, and
asymmetric pules for long times.

Figure 2a shows the time dependence of the cumulative dif-
fusion coefficient D(t), of H2O diffusing through the three
samples, as well as for unrestricted H2O (cyan). Note that the
diffusion coefficient for unrestricted H2O (cyan) was rescaled
using D1 from sample A. While there is no time depen-
dence in D(t) for unrestricted H2O, a power-law exponent
˜

# = 0.59± 0.09 in D(t)�D1 ⇠ t

�#̃ was observed for H2O
diffusing through sample A and ˜

# = 0.56 ± 0.11 for sam-
ple B. Note that the exponent ˜# is the same with # of eq. (2)
if # < 1. The exponents are in remarkable agreement with
equation (1) for p = 0 and d = 1, and with earlier predic-
tion [22] for the tail in D(t). On the other hand D(t) � D1
for H2O diffusing through the HU sample exhibits the 1/t tail
with ˜

# = 0.99 ± 0.14. The range in which the least squares
a.3 fit was performed was chosen such that the �

2
/dof was min-

imized. The structural and dynamical exponents, as well as
main characteristic of the samples such as residence and dif-
fusion times ⌧r and ⌧D, are given in Table I.

The 1/t tail in D(t) in the HU sample indicates that # > 1.
Indeed, the cumulative D(t) ⌘ 1

t

R t
0d⌧ Dinst(⌧) may be used

to determine # only in the case when the power-law tail in
Dinst(t) is sufficiently slow [10], # < 1. In this case, the
instantaneous mean squared displacement rate (2) has similar
behavior to the average rate h(xt � x0)

2i/2t over the whole
interval t; formally, the above integral converges at the upper
limit. However, when the underlying # > 1, the tail D(t) �
D1 =

1
t

R t
0d⌧ [Dinst(⌧)�D1] ' 1

t

R1
0 d⌧ [Dinst(⌧)�D1]

is determined by the short ⌧ , such that the 1/t factor overshad-
ows the effect of #. In other words, D(t)�D1 ⇠ t

�#̃, where
˜

# = min {#, 1}. Hence, if the tail in D(t) has ˜

# = 1, which
is the case for the HU sample, one has to obtain Dinst(t) via
numerical differentiation to uncover the true # > 1, with the
expense of amplifying the experimental noise.

Figure 2b shows the computed instantaneous Dinst(t) =

@t[tD(t)], using numerical differentiation with Savitzky-
Golay (SG) regularization [23] (cf. Supplementary Materi-
als), along with the weighted least squares fit (solid line).The
time window in which the fit was performed was chosen such
that the �

2
/dof was minimum. As expected, for both SR

samples, Dinst(t) reaches its universal limit D1 according
to equation (2) with # = 0.52 ± 0.19 for sample A and
# = 0.45±0.15 for sample B (cf. Table I), consistent with the
above results for ˜# and equation (1) with p = 0 and d = 1. For
the HU sample, the dynamical exponent # = 1.51 ± 0.12, is
notably different from that for SR samples, and in agreement
with equation (1) for p = 2 and d = 1. The least squares fit
was stable with respect to the SG filtering window and poly-
nomial order producing reasonable values of �2

/dof (cf. Sup-
plementary Materials for details, Fig. S4-S5). Note that the fit

b2is mainly weighted by the first points which have good signal-
to-noise ratio. An important observation of Figure 2b is that

A2the molecules in the HU sample C reach equilibrium qualita-
tively faster than in the SR samples A-B, so that the power
law tail becomes pronounced already when t ⇠ ⌧r. This is a
general consequence of a more efficient coarse-graining in a
qualitatively more ordered (hyperuniform) sample. As noted
in ref. [10], in the “extreme” case of a fully periodic sample,
diffusion exhibits coherence due to infinitely long spatial cor-
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FIG. 1. Structure and universality classes of the samples. a Representative optical microscopy image of the SR sample. b, AFM image of
a single barrier. c, Digitized 1d cut-outs of the two SR samples (A-B) and HU sample C. d, Power spectrum (3) of the barrier density n(x)

reveals qualitative differences between the disorder classes as k ! 0: A plateau (p = 0) in �(k) for the SR samples (A-B), and k

p scaling
with p = 2 for HU sample (C).

sample was constructed using the barriers with 15 nm pore
diameter (A in Fig. 1c) and one SR sample using the barriers
with 45 nm pore diameter (B in Fig. 1c). 1b reveals a pore
density of 8 pores/µm2 by AFM. These two different samples
correspond to two different realizations of short-range disor-
der and the one-dimensional lines shown in Fig. 1c corre-
spond to digitized cut-outs of the actual samples representing

c1 the barrier spacings of a part of the sample.
A representative optical microscopy image of SR sample A

is shown in Fig. 1a and yields an average spacing ā ⇡ 12.5µm
between the centers of the barriers. The short-range character
of the arrangement is proven by the finite value of the plateau
�(k)|k!0 of the power spectrum, Fig. 1d, and is also consis-
tent with the probability density function (PDF) of the succes-

a.1 sive barrier spacings (Supplementary Fig. S7) lacking a “fat
tail”. The non-Possonian nature of barrier arrangement in both
SR samples is shown by the value �(k)|k!0 · ā which is dif-
ferent from unity (in contrast to the Poissonian, i.e. fully un-
correlated placement), and is consistent with non-exponential
PDF of the barrier spacings.

On the other hand, the hyperuniform (HU) disordered sam-
ple C, shown in Fig. 1c (and Supplementary Fig. S1-d), was
achieved by placing identical rectangular copper plates be-
tween the permeable barriers with pore diameter of 45 nm and
is characterized by reduced long-range structural fluctuations.
The thickness of the copper plates was ⇠ (45±4) µm. A car-
toon representation of the HU sample is shown in Fig. S1a-b
of the Supplementary. Ideally, the barriers would create a pe-
riodic lattice (with ā ⇡ 51.0µm) which would result in Bragg
peaks in �(k) and �(k < ⇡/ā) ⌘ 0. However, experimental
inaccuracies in the placement of the barriers and copper plates
act as random displacements from ideal lattice positions, re-
sulting in apparent hyperuniformity [15] of a “shuffled lattice”

[19], for which the power spectrum �(k) ⇠ k

2 for kā ⌧ 1.
The spectrum in Fig. 1d is indeed consistent with the expo-
nent value p = 2. The resulting mean spacing between the
barriers as revealed from optical microscopy (Supplementary
Fig. S1-d) is ā = 58.9µm.

We underscore that it is practically impossible to discern
the qualitative differences between the samples A, B and C —
or to reveal the disorder universality class by the naked eye.
Based on local sample cut-outs, shown in Fig. 1c, the three
samples look very similar, when the dimensions are rescaled
such that mean spacing between the barrier centers is the same
for all of them. However the power spectrum �(k), shown in
Fig. 1d, readily shows similarity between samples A and B,
and their qualitative difference from sample C, as its low k

scaling captures the universal features in the large-scale be-
havior of the density fluctuations. For the computation of

A1-B1-
C�(k), the reader is referred to Supplementary section II as

well as Fig. S8. In what follows, we show how a bulk dif-
fusion measurement distinguishes between the SR and HU
classes, thereby yielding the form of �(k) for kā ⌧ 1 (i.e.
for distances exceeding ā), and experimentally validating the
relation (1) in dimension d = 1.

The conventional cumulative D(t) ⌘ h(xt � x0)
2i/2t of

H2O was measured using pulse-gradient diffusion NMR [3]
over a broad range of diffusion times t, from 1.0 ms to 4.5 s,
spanning over 3 orders of magnitude, and translating to mean
square displacements h(xt � x0)

2i1/2 ranging from 2µm to
144µm. Measuring such short mean square displacements re-
quires fast switching and strong in magnitude gradient pulses.
Therefore, a homemade gradient coil was constructed [20, 21]
capable of delivering gradient pulses of approximately 90
G/cmA. However, such strong gradient pulses may introduce
errors in the experimental data, such as those due to eddy cur-
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reveals qualitative differences between the disorder classes as k ! 0: A plateau (p = 0) in �(k) for the SR samples (A-B), and k

p scaling
with p = 2 for HU sample (C).

sample was constructed using the barriers with 15 nm pore
diameter (A in Fig. 1c) and one SR sample using the barriers
with 45 nm pore diameter (B in Fig. 1c). 1b reveals a pore
density of 8 pores/µm2 by AFM. These two different samples
correspond to two different realizations of short-range disor-
der and the one-dimensional lines shown in Fig. 1c corre-
spond to digitized cut-outs of the actual samples representing

c1 the barrier spacings of a part of the sample.
A representative optical microscopy image of SR sample A

is shown in Fig. 1a and yields an average spacing ā ⇡ 12.5µm
between the centers of the barriers. The short-range character
of the arrangement is proven by the finite value of the plateau
�(k)|k!0 of the power spectrum, Fig. 1d, and is also consis-
tent with the probability density function (PDF) of the succes-

a.1 sive barrier spacings (Supplementary Fig. S7) lacking a “fat
tail”. The non-Possonian nature of barrier arrangement in both
SR samples is shown by the value �(k)|k!0 · ā which is dif-
ferent from unity (in contrast to the Poissonian, i.e. fully un-
correlated placement), and is consistent with non-exponential
PDF of the barrier spacings.

On the other hand, the hyperuniform (HU) disordered sam-
ple C, shown in Fig. 1c (and Supplementary Fig. S1-d), was
achieved by placing identical rectangular copper plates be-
tween the permeable barriers with pore diameter of 45 nm and
is characterized by reduced long-range structural fluctuations.
The thickness of the copper plates was ⇠ (45±4) µm. A car-
toon representation of the HU sample is shown in Fig. S1a-b
of the Supplementary. Ideally, the barriers would create a pe-
riodic lattice (with ā ⇡ 51.0µm) which would result in Bragg
peaks in �(k) and �(k < ⇡/ā) ⌘ 0. However, experimental
inaccuracies in the placement of the barriers and copper plates
act as random displacements from ideal lattice positions, re-
sulting in apparent hyperuniformity [15] of a “shuffled lattice”

[19], for which the power spectrum �(k) ⇠ k

2 for kā ⌧ 1.
The spectrum in Fig. 1d is indeed consistent with the expo-
nent value p = 2. The resulting mean spacing between the
barriers as revealed from optical microscopy (Supplementary
Fig. S1-d) is ā = 58.9µm.

We underscore that it is practically impossible to discern
the qualitative differences between the samples A, B and C —
or to reveal the disorder universality class by the naked eye.
Based on local sample cut-outs, shown in Fig. 1c, the three
samples look very similar, when the dimensions are rescaled
such that mean spacing between the barrier centers is the same
for all of them. However the power spectrum �(k), shown in
Fig. 1d, readily shows similarity between samples A and B,
and their qualitative difference from sample C, as its low k

scaling captures the universal features in the large-scale be-
havior of the density fluctuations. For the computation of

A1-B1-
C�(k), the reader is referred to Supplementary section II as

well as Fig. S8. In what follows, we show how a bulk dif-
fusion measurement distinguishes between the SR and HU
classes, thereby yielding the form of �(k) for kā ⌧ 1 (i.e.
for distances exceeding ā), and experimentally validating the
relation (1) in dimension d = 1.

The conventional cumulative D(t) ⌘ h(xt � x0)
2i/2t of

H2O was measured using pulse-gradient diffusion NMR [3]
over a broad range of diffusion times t, from 1.0 ms to 4.5 s,
spanning over 3 orders of magnitude, and translating to mean
square displacements h(xt � x0)

2i1/2 ranging from 2µm to
144µm. Measuring such short mean square displacements re-
quires fast switching and strong in magnitude gradient pulses.
Therefore, a homemade gradient coil was constructed [20, 21]
capable of delivering gradient pulses of approximately 90
G/cmA. However, such strong gradient pulses may introduce
errors in the experimental data, such as those due to eddy cur-
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dom bonds. These two situations are representatives of
the equivalence class

(
1, 12

)
of random bond and random

jump models[15, 16]. Other representatives include seg-
ments with different local diffusion coefficient, which can
be thought of as a varying density of microscopic barriers.

Another class of ordering,
(
1, 1

)
, is represented by the

periodic, or, more generally, hyperuniform [10] systems,
for which the variance (δN)2 ∼ 1 is not extensive. An ex-
ample is a crystal lattice with independently fluctuating
positions around equilibrium periodic sites. Technically,
the density correlator is a sequence of infinitely narrow
Bragg peaks, with Γ(q)|q→0 = 0.

More exotic ordering types emerge when the variance
(δN)2 ∼ L3−µ, 1 < µ < 2, grows faster than L, corre-
sponding to α = µ−1

2 . This situation can be realized by
independently added segments drawn from a Lévy distri-
bution p(a) ∼ 1/a1+µ, in which case the density correla-
tor diverges as Γ(q) ∼ |q|µ−2. Again, instead of allowing
segments with diverging variance σ2 = ∞, one could vary
the permeabilities on a regular lattice in such a way that
a number of elementary barriers placed at each site has
an infinite variance.

We show that the diffusion coefficientD(t) and the kur-
tosis K(t) are very sensitive to how spatially correlated
the barriers are. This correlation is quantified in terms
of the fluctuation of the number N(t) of the barriers
falling within the diffusion length L(t) in agreement with
Eq. (1). We relate this scaling to the probability density
function (PDF) p(a) of the intervals am = xm+1 − xm

between successive positions xm of the barriers; this rela-
tion is valid whenever a sample is made of random build-
ing blocks (e.g. cells). Depending on the variance σ2 of
p(a), we classify the disorder in their positions as falling
into the three types (Fig. 2): (a) order, σ → 0, corre-
sponding to perfect correlations (applicable to any peri-
odic arrangement of barriers, with one or more barriers

per unit cell); (b) strong disorder, σ → ∞, correspond-
ing to the “fat tail” in p(a) ∼ a−(1+µ), 1 < µ < 2,
when the barriers come in bunches separated by wide
gaps; (c) most common case of a moderate disorder char-
acterized by finite σ. These ordering types can be distin-
guished by the exponent α of the power-law decrease of
the relative fluctuation δN/ ⟨N⟩ ∼ L−α(t) in the number
of barriers falling within the diffusion length, leading to
(D(t)−D∞)/D∞ ∼ t−α.

is fully defined by the mean ā =
∫
ap(a) da and per-

meability κ, and is insensitive to the spatial arrangement
of the barriers, we find that the way it is approached
at large time t ≫ ā2/D∞ is sensitive to the disorder,
with the type (b) yielding the slowest decrease, α = µ−1

2 ,
0 < α < 1

2 ; type (a) the fastest one, α = 1; and the
type (c) corresponding to α = 1

2 with the exact prefactor
scaling as σ2,
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where τr = V/(Sκ) = ā/(2κ) is the residence time in a
typical interval (“pore”).

Remarkably, the finite-variance limit (3) is uniquely
determined by the mean and the variance of p(a), and
is independent of any other features of this PDF. This
rare case of a relative universality of diffusion properties
may be utilized as a practical way to quantify the degree
of ordering of the restrictions in quasi-one-dimensional
samples, by combining the short-time limit of D(t) yield-
ing D0 and S/V = 2/ā [5], with the long-time limit,
Eqs. (2) and (3), yielding the membrane permeability
and the variance in the inter-membrane intervals.
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ample is a crystal lattice with independently fluctuating
positions around equilibrium periodic sites. Technically,
the density correlator is a sequence of infinitely narrow
Bragg peaks, with Γ(q)|q→0 = 0.
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bution p(a) ∼ 1/a1+µ, in which case the density correla-
tor diverges as Γ(q) ∼ |q|µ−2. Again, instead of allowing
segments with diverging variance σ2 = ∞, one could vary
the permeabilities on a regular lattice in such a way that
a number of elementary barriers placed at each site has
an infinite variance.

We show that the diffusion coefficientD(t) and the kur-
tosis K(t) are very sensitive to how spatially correlated
the barriers are. This correlation is quantified in terms
of the fluctuation of the number N(t) of the barriers
falling within the diffusion length L(t) in agreement with
Eq. (1). We relate this scaling to the probability density
function (PDF) p(a) of the intervals am = xm+1 − xm

between successive positions xm of the barriers; this rela-
tion is valid whenever a sample is made of random build-
ing blocks (e.g. cells). Depending on the variance σ2 of
p(a), we classify the disorder in their positions as falling
into the three types (Fig. 2): (a) order, σ → 0, corre-
sponding to perfect correlations (applicable to any peri-
odic arrangement of barriers, with one or more barriers

per unit cell); (b) strong disorder, σ → ∞, correspond-
ing to the “fat tail” in p(a) ∼ a−(1+µ), 1 < µ < 2,
when the barriers come in bunches separated by wide
gaps; (c) most common case of a moderate disorder char-
acterized by finite σ. These ordering types can be distin-
guished by the exponent α of the power-law decrease of
the relative fluctuation δN/ ⟨N⟩ ∼ L−α(t) in the number
of barriers falling within the diffusion length, leading to
(D(t)−D∞)/D∞ ∼ t−α.
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meability κ, and is insensitive to the spatial arrangement
of the barriers, we find that the way it is approached
at large time t ≫ ā2/D∞ is sensitive to the disorder,
with the type (b) yielding the slowest decrease, α = µ−1
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where τr = V/(Sκ) = ā/(2κ) is the residence time in a
typical interval (“pore”).

Remarkably, the finite-variance limit (3) is uniquely
determined by the mean and the variance of p(a), and
is independent of any other features of this PDF. This
rare case of a relative universality of diffusion properties
may be utilized as a practical way to quantify the degree
of ordering of the restrictions in quasi-one-dimensional
samples, by combining the short-time limit of D(t) yield-
ing D0 and S/V = 2/ā [5], with the long-time limit,
Eqs. (2) and (3), yielding the membrane permeability
and the variance in the inter-membrane intervals.
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DðtÞ≡ hvðtÞvð0Þi∼ t−ð1+ϑÞ;   ϑ> 0: [2]

Practically, the power law tail 2 can be identified in the way the
time-dependent instantaneous diffusion coefficient

DinstðtÞ≡
∂
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!
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"
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=
Z t

0

dt′ Dðt′Þ ’ D∞ + const · t−ϑ [3]

approaches the finite bulk diffusion constant D∞. The quantity
DinstðtÞ is accessible with techniques (3, 4) measuring the mean-
square molecular displacement hδx2ðtÞi in a particular direction
(Eqs. 4–6).
The relation 1 provides a way to determine the exponent p

and, thereby, the structural universality class, using bulk diffusion
measurement. Local properties may affect the coefficients, e.g.,

the values of D∞ and of the prefactor of t−ϑ in [3], but not the
exponent ϑ. The latter is robust with respect to variations
between samples of a similar origin, such as due to biological
variability. This picture is akin to critical phenomena (10), where
the phase transition temperature is nonuniversal (sensitive to
short-scale details), while the critical exponents distinguish, based
on global symmetries, between the universality classes of long-
range fluctuations.

Examples of Structural Universality Classes
Fig. 1 illustrates how diffusion distinguishes between the uni-
versality classes via the relation 1 in the d= 1 dimension. The
Monte Carlo (MC)-simulated diffusion is hindered by the
permeable barriers with mean density n= 1=a and permeability
κ (Materials and Methods). The universality classes, realized
here by the different ways of arranging the same 40,000 bar-
riers (sample cutouts shown in Fig. 1A), exhibit distinct structural
exponents p in the barrier density correlator (Fig. 1B), which result
in the distinct exponents 1 (Fig. 1C).

Order.Any periodic arrangement (such as Fig. 1, red) is reflected
in the Bragg peaks in ΓðkÞ, with Γ≡ 0 for k below the minimal
reciprocal lattice vector, formally corresponding to p=∞. As the
coarse-graining beyond the lattice constant does not increase
the structural fluctuations, DðtÞ decays and DinstðtÞ reaches D∞
exponentially fast, formally corresponding to ϑ=∞ (i.e., faster
than any inverse power law); see also SI Text, Section IIE.
Structural disorder comes in qualitatively different ways.

Short-Range Disorder. Short-range disorder is arguably the most
common disorder class, and it serves as a good reference point. It
is characterized by a finite correlation length lc, beyond which
the correlator ΓðrÞ decreases sufficiently fast, which corresponds
to the finite plateau in ΓðkÞjk→ 0 = const> 0, and the structural
exponent p= 0, similar to the Poissonian disorder (uncorrelated
restrictions). Finite correlation length means that, at larger dis-
tances, the variance of the number of restrictions scales in pro-
portion to their mean number in a given volume, consistent with
the central limit theorem. In Fig. 1 (blue), we chose each suc-
cessive interval am between barriers independently from the
distribution PðaÞ with mean a= 1=n and finite variance σ2. This
results in the finite plateau Γjk→ 0 = σ2=a3, as calculated in
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C

Fig. 1. Time-dependent diffusion distinguishes between structural univer-
sality classes in one dimension, represented here by the placement of iden-
tical permeable barriers with the same mean density. (A) Order (red),
hyperuniform disorder (green), short-range disorder (blue), and strong dis-
order (magenta) are shown. (B) The barrier densities have qualitatively dif-
ferent large-scale fluctuations, reflected in the small-k behavior of their
density correlator ΓðkÞ∼ kp (see Examples of Structural Universality Classes).
(C) Numerical results confirming the relation 1. The time-dependence 3
clearly distinguishes between the four arrangements, while the value D∞ is
the same for all of them. The dashed lines are the exact power laws from
Eqs. S14, S19, and S23, and the exponential decrease is from the exact so-
lution, Eq. S25. Strong disorder occurs for 1< μ< 2; here μ= 7=4.
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E

Fig. 2. Structural universality classes in dimension d > 1. (A and B) The
examples of analogs of the d = 1 classes, corresponding to Fig. 1 (blue and
red). (C–E) The extended universality classes inherent to d > 1. (C) Random
membranes, with representatives shown for d = 2 and d = 3, result in ϑ = 1/2
for any d. (D) Random rods, with a representative shown for d = 3, result in
ϑ = 1 for any d. (E) Structure correlator Γ(k) ∼ kp (numerically calculated and
angular averaged, arbitrary units) for C (magenta in d = 2 and green in d = 3),
and for D (gray), exhibits the negative structural exponent p = –ds.
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DðtÞ≡ hvðtÞvð0Þi∼ t−ð1+ϑÞ;   ϑ> 0: [2]

Practically, the power law tail 2 can be identified in the way the
time-dependent instantaneous diffusion coefficient
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approaches the finite bulk diffusion constant D∞. The quantity
DinstðtÞ is accessible with techniques (3, 4) measuring the mean-
square molecular displacement hδx2ðtÞi in a particular direction
(Eqs. 4–6).
The relation 1 provides a way to determine the exponent p

and, thereby, the structural universality class, using bulk diffusion
measurement. Local properties may affect the coefficients, e.g.,

the values of D∞ and of the prefactor of t−ϑ in [3], but not the
exponent ϑ. The latter is robust with respect to variations
between samples of a similar origin, such as due to biological
variability. This picture is akin to critical phenomena (10), where
the phase transition temperature is nonuniversal (sensitive to
short-scale details), while the critical exponents distinguish, based
on global symmetries, between the universality classes of long-
range fluctuations.

Examples of Structural Universality Classes
Fig. 1 illustrates how diffusion distinguishes between the uni-
versality classes via the relation 1 in the d= 1 dimension. The
Monte Carlo (MC)-simulated diffusion is hindered by the
permeable barriers with mean density n= 1=a and permeability
κ (Materials and Methods). The universality classes, realized
here by the different ways of arranging the same 40,000 bar-
riers (sample cutouts shown in Fig. 1A), exhibit distinct structural
exponents p in the barrier density correlator (Fig. 1B), which result
in the distinct exponents 1 (Fig. 1C).

Order.Any periodic arrangement (such as Fig. 1, red) is reflected
in the Bragg peaks in ΓðkÞ, with Γ≡ 0 for k below the minimal
reciprocal lattice vector, formally corresponding to p=∞. As the
coarse-graining beyond the lattice constant does not increase
the structural fluctuations, DðtÞ decays and DinstðtÞ reaches D∞
exponentially fast, formally corresponding to ϑ=∞ (i.e., faster
than any inverse power law); see also SI Text, Section IIE.
Structural disorder comes in qualitatively different ways.

Short-Range Disorder. Short-range disorder is arguably the most
common disorder class, and it serves as a good reference point. It
is characterized by a finite correlation length lc, beyond which
the correlator ΓðrÞ decreases sufficiently fast, which corresponds
to the finite plateau in ΓðkÞjk→ 0 = const> 0, and the structural
exponent p= 0, similar to the Poissonian disorder (uncorrelated
restrictions). Finite correlation length means that, at larger dis-
tances, the variance of the number of restrictions scales in pro-
portion to their mean number in a given volume, consistent with
the central limit theorem. In Fig. 1 (blue), we chose each suc-
cessive interval am between barriers independently from the
distribution PðaÞ with mean a= 1=n and finite variance σ2. This
results in the finite plateau Γjk→ 0 = σ2=a3, as calculated in
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Fig. 1. Time-dependent diffusion distinguishes between structural univer-
sality classes in one dimension, represented here by the placement of iden-
tical permeable barriers with the same mean density. (A) Order (red),
hyperuniform disorder (green), short-range disorder (blue), and strong dis-
order (magenta) are shown. (B) The barrier densities have qualitatively dif-
ferent large-scale fluctuations, reflected in the small-k behavior of their
density correlator ΓðkÞ∼ kp (see Examples of Structural Universality Classes).
(C) Numerical results confirming the relation 1. The time-dependence 3
clearly distinguishes between the four arrangements, while the value D∞ is
the same for all of them. The dashed lines are the exact power laws from
Eqs. S14, S19, and S23, and the exponential decrease is from the exact so-
lution, Eq. S25. Strong disorder occurs for 1< μ< 2; here μ= 7=4.
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Fig. 2. Structural universality classes in dimension d > 1. (A and B) The
examples of analogs of the d = 1 classes, corresponding to Fig. 1 (blue and
red). (C–E) The extended universality classes inherent to d > 1. (C) Random
membranes, with representatives shown for d = 2 and d = 3, result in ϑ = 1/2
for any d. (D) Random rods, with a representative shown for d = 3, result in
ϑ = 1 for any d. (E) Structure correlator Γ(k) ∼ kp (numerically calculated and
angular averaged, arbitrary units) for C (magenta in d = 2 and green in d = 3),
and for D (gray), exhibits the negative structural exponent p = –ds.
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extended,	any	d
random	membranes:	DN	et	al.,	Nat.	Phys.	2011
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FIG. 1: Time-dependent diffusion distinguishes between structural
complexity classes in one dimension, represented by the placement
of identical permeable barriers with the same mean density. a,
Short-range disorder (blue), hyperuniform disorder (green), and or-
der (red). b, The barrier densities have qualitatively different large-
scale fluctuations, reflected in the small-k behavior of their density
correlator Γ(k) ∼ kp, with p = 0, 2 and∞ (see text). c, Numerical
results confirming the relation (3). The time-dependence (2) clearly
distinguishes between the three arrangements, whereas the valueD∞

is the same for all of them. The dashed lines are the exact power laws
from equation (4), and the exponential decrease is from the exact so-
lution (see text and the Supplementary information); τr = ā/2κ.

corresponding to p = ∞, Dinst(t)−D∞ decreases exponen-
tially (faster than any power law), corresponding to α = ∞.
We now outline the main disorder classes in d dimensions.
The short-range disorder is characterized by the finite corre-

lation length lc, beyond which the disorder correlator Γ(r) →
0, and the limit of Γ|k→0 is finite, corresponding to p = 0.
In this case, the variance ⟨(δD)2⟩|L ∝ (lc/L)d in equation
(5) in the Methods section decreases in the same way as the
relative fluctuation of the structural heterogeneity according
to the central limit theorem, as long as the diffusion length
L(t) ≫ lc. This simple picture ofDinst(t) relying on typical,
rather than optimal, structural fluctuations (as long as D∞ is
finite) yields α = d/2 in d dimensions27,28. The examples are
the first case in Fig. 1, or a medium made of randomly placed
domains of two diffusivity values.
When the structure is more homogeneous (e.g. periodic

a b

c d

e
10−1 100

10−3

10−2

10−1

100

k

Γ
(k

)

k−2

k−1

k−1

FIG. 2: Extended structural disorder types. a, Randomly placed and
oriented permeable barriers (lines), ds = 1 in d = 2 dimensions,
correspond to the histological slice in b, ref. 31, of skeletal muscle
across the fibers. Note the tight cell packing achieved by straight cell
walls. c, Randomly placed and oriented rods, ds = 1 in d = 3. d,
Randomly placed and oriented permeable barriers (planes), ds = 2
in d = 3. e, Structure correlator Γ(k) ∼ kp (numerically calculated
and angular averaged, arb. units) for a (magenta), c (grey), and d
(green) exhibits the negative exponent p = −ds.

or hyperuniform29), the structural correlations are suppressed,
Γ ∼ kp with p > 0, hence the variance ⟨(δD)2⟩|L narrows
down faster than L−d with increasing L, yielding α > d/2 in
d dimensions (see Fig. 1). In the “extreme” case of a strictly
periodic system in any d, coarse-graining beyond the micro-
scopic scale of a largest lattice vector does not contribute
to the structural fluctuations, Γ(k) ≡ 0 (p = ∞). In this
case,D(t) decays andDinst(t) reachesD∞ exponentially fast
(α = ∞) already at the microscopic scale, with the decay rate
determined by the details of the lattice. The hyperuniform
media, corresponding to Γ ∼ kp with 0 < p < ∞, such as
a perturbed lattice (p = 2) or a maximally random jammed
state29 with p ≈ 1, fall in-between the short-range and the
periodic cases. For them, equations (1) and (2) are the power
laws with d/2 < α < ∞.
Conversely, stronger structural fluctuations lead to α < d/2
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kā/2π
Γ
(k

)
·
ā
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is the same for all of them. The dashed lines are the exact power laws
from equation (4), and the exponential decrease is from the exact so-
lution (see text and the Supplementary information); τr = ā/2κ.

corresponding to p = ∞, Dinst(t)−D∞ decreases exponen-
tially (faster than any power law), corresponding to α = ∞.
We now outline the main disorder classes in d dimensions.
The short-range disorder is characterized by the finite corre-

lation length lc, beyond which the disorder correlator Γ(r) →
0, and the limit of Γ|k→0 is finite, corresponding to p = 0.
In this case, the variance ⟨(δD)2⟩|L ∝ (lc/L)d in equation
(5) in the Methods section decreases in the same way as the
relative fluctuation of the structural heterogeneity according
to the central limit theorem, as long as the diffusion length
L(t) ≫ lc. This simple picture ofDinst(t) relying on typical,
rather than optimal, structural fluctuations (as long as D∞ is
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correspond to the histological slice in b, ref. 31, of skeletal muscle
across the fibers. Note the tight cell packing achieved by straight cell
walls. c, Randomly placed and oriented rods, ds = 1 in d = 3. d,
Randomly placed and oriented permeable barriers (planes), ds = 2
in d = 3. e, Structure correlator Γ(k) ∼ kp (numerically calculated
and angular averaged, arb. units) for a (magenta), c (grey), and d
(green) exhibits the negative exponent p = −ds.

or hyperuniform29), the structural correlations are suppressed,
Γ ∼ kp with p > 0, hence the variance ⟨(δD)2⟩|L narrows
down faster than L−d with increasing L, yielding α > d/2 in
d dimensions (see Fig. 1). In the “extreme” case of a strictly
periodic system in any d, coarse-graining beyond the micro-
scopic scale of a largest lattice vector does not contribute
to the structural fluctuations, Γ(k) ≡ 0 (p = ∞). In this
case,D(t) decays andDinst(t) reachesD∞ exponentially fast
(α = ∞) already at the microscopic scale, with the decay rate
determined by the details of the lattice. The hyperuniform
media, corresponding to Γ ∼ kp with 0 < p < ∞, such as
a perturbed lattice (p = 2) or a maximally random jammed
state29 with p ≈ 1, fall in-between the short-range and the
periodic cases. For them, equations (1) and (2) are the power
laws with d/2 < α < ∞.
Conversely, stronger structural fluctuations lead to α < d/2

Dinst ' D1 + const · t�1

ϑ = 1

extended,	random	rods

p= − (d−1)

p= − (d−2)

• Media	can	be	disordered	in	a	few	
distinct	ways

• Relate	structure	classes	to	
diffusive	dynamics

• Exponent	ϑ =	marker	for	the	type	
of	structural	order/disorder

• Robust	wrt biological	variability!
• Focus	on	the	relevant	part	of	

tissue	structure

PNAS	111,	5088	(2014)



Universality and dynamical exponents

• The	idea comes	from	theory	of	critical	phenomena:

At	the	phase	transition,	many	systems	behave	in	a	similar	way,	with	same	critical	exponents;
Group	them	into	“universality	classes”
L	Landau,	~1930s;	and		A	Migdal,	V	Pokrovsky,	L Kadanoff,	K	Wilson,	~1970

Critical	dynamics	near	a	phase	transition	– dynamical	exponents
P	Hohenberg,	B	Halperin,	~1980

• In	our	case,	the	classification	in	terms	of	structural	universality	classes,	
distinguished	by	the	Brownian	dynamics

Dinst(t) =
@

@t

hx2i
2

' D1 + const · t�#

# =
p+ d

2

diffusion structure

dimension

• Structural	exponent	p:	
p=0:	uncorrelated	(~Poissonian fluctuations)
p>0:	more	ordered	(smaller	fluctuations);			p<0:	less	ordered	(larger	fluctuations)

• Finite	D∞è Normal	(not	anomalous)	diffusion,	 hx2i ⇠ t

1
, t ! 1

hx2i ⇠ D1t+ const · t1�# < 1
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Department	of	Radiology

40+	MRI	scanners	
~	200	MDs
>	1.5�106 exams/year

Center for	Biomedical	Imaging	(660	First	ave @38th st)	=	research	division
100+	PhD	researchers:	

RF	coil	development;	fast	acquisition	methods	(compressed	sensing,	MR	fingerprinting);	MR	
spectroscopy;	tissue	electrical	properties	mapping;	mesoscopic MRI	(diffusion,	R2*)

The	Real	World…
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Mesoscopic physics @ μm scale

8

domain, asymptotically approaches a familiar universal Gaus-
sian distribution in the continuum limit. For that, we first per-
form its inverse Fourier transform, yielding

G

(0)

t,x

=
1

2
· 2�t

t!�
t�x

2

�
!
�

t+x

2

�
!

(2.33)

in terms of the binomial coefficient of the expansion of
2�t(eiq +e

�iq)t. Next, we apply the Stirling’s approximation
for the factorial, n! ' p

2⇡n (n/e)n, yielding the Gaussian
distribution

G

(0)

t,x

' 1p
2⇡t

e

�x

2
/2t

, (2.34)

an inverse Fourier transform of Eq. (2.32), with the variance⌦
x

2

↵
= t corresponding to the value (2.28). This is the central

limit theorem in action.

III. WHAT DO WE MEASURE?

No, no! The adventures first, explanations take such a
dreadful time.

Lewis Carroll, Alice’s Adventures in Wonderland

A. The Bloch-Torrey equation

With NMR, after an excitation, one measures the transverse
magnetization M(t, r), which is a complex-valued quantity
(a two-dimensional vector in the plane transverse to the B

0

field). Its evolution is governed by the Bloch-Torrey equation
(Torrey, 1956), which in the rotating frame reads

@

t

M = @r

�
D(r)@rM

� � i⌦(r)M � R

2

(r)M . (3.1)

The NMR-specific additional terms, compared to the pure
diffusion equation (2.9), are the locally varying Larmor fre-
quency offset ⌦(r) and transverse relaxation rate R

2

(r). Cru-
cially, their presence result in the right-hand side of Eq. (3.1)
not being the divergence of any “current”.

The absence of the conservation law of the form (2.4) for
M(t, r) results in the transverse relaxation (decay) of the net
magnetization

R
drM(t, r) acquired within a voxel. Simply

put, the number of water molecules and protons is conserved,
but their magnetization is not.

When both ⌦ and R

2

are uniform across a sample (voxel),
the substitution M =  e

�i⌦t�R2t returns us back to the dif-
fusion equation (2.9). When a sample has nonuniform mag-
netic properties, this factorization does not work, and the
relaxation effects bias the diffusion metrics (Kiselev, 2004;
Zhong et al., 1991).

In what follows, we will not consider the relaxation effects,
and will focus solely on the conserving diffusional dynamics
of the water molecules, Eq. (2.9).

B. The diffusion propagator and q-space imaging

The diffusion-weighted measurement is really a transverse
relaxation measurement in disguise. After all, we only mea-
sure the time evolution of the net transverse magnetization
/ R

V

drM(t, r), where V is our macroscopic volume (e.g.
an imaging voxel). The trick, due to Stejskal and Tanner (Ste-
jskal and Tanner, 1965), is to apply a known external ⌦(t, r),
such that the transverse relaxation of the observed “diffusion-
weighted signal” S(t) / R

V

drM(t, r) would have a footprint
of the diffusive properties of the medium.

For simplicity, let us assume an ideal case of a balanced
narrow-pulse gradient of the Larmor frequency,

g(⌧) = q [�(⌧ � t) � �(⌧)] . (3.2)

In other words, we have a narrow gradient pulse at ⌧ = 0 and
an opposite pulse of the same magnitude at ⌧ = t. Here, q
is by construction a vector in the direction of g whose mag-
nitude is given by the integral under the gradient pulse. The
parameters q and t are under our experimental control.

The Bloch-Torrey evolution of unit magnetization M

t;rt,r0 ,
which initially were concentrated around r

0

, M

t;rt,r0 |t=0

=
�(r

t

� r

0

), is then described, according to Eq. (3.1) with
⌦(⌧, r) = g(⌧)r, as

M

t;rt,r0 = e

�iqrtG
t;rt,r0e

iqr0
. (3.3)

Here, the diffusion propagator G
t;rt,r0 is by definition the

probability density function (PDF) of molecular displace-
ments from point r

0

to point r
t

over time t. It is the most
basic characteristic of diffusion in a given medium (tissue).
Formally, it is the fundamental solution of the diffusion equa-
tion (2.9) and it will be discussed in detail in the following
Section IV, cf. Eq. (4.2) below. Qualitatively, G

t;rt,r0 governs
the purely diffusive spreading of a “packet” of magnetization
carried by water molecules in-between the two pulses.

The measurement effectively averages over the initial
points r

0

(as the signal is acquired from all protons in a voxel),
and sums over all the possible finite points r

t

(since the proba-
bilities of mutually excluding events of taking different Brow-
nian paths emanating from r

0

add up). Introducing the dis-
placement r = r

t

�r

0

, we obtain the key relation between the
diffusion-weighted signal Sq(t) and the voxel-averaged prop-
agator (Callaghan, 1991):

Sq(t) =

Z

V

dr
dr

0

V

e

�iqrG
t;r0+r,r0 ⌘ G

t,q . (3.4)

Defined in this way, the diffusion-weighted signal is normal-
ized to be Sq(t)|

t=+0

⌘ 1. Eq. (3.4) says that we are directly
measuring the spatial Fourier transform of the voxel-averaged
displacement PDF, discussed in greater detail around Eq. (4.6)
of the following Section. But already at this point it is intu-
itively clear that (i) the diffusion-weighted measurement con-
tains a lot of information about tissue structure and (ii) this
information is “hidden” due to the averaging over all spins
and their Brownian paths within a voxel.

Diffusion	term:
HC	Torrey,	PhysRev 1956
(e.g.	cell	walls,	tumor	vs
benign	tissue,	etc)

Locally	varying	
Larmor freq.	offset
(e.g.	blood,	iron)

Locally	varying	transverse	
relaxation	rate	(e.g.	myelin	vs
water	vs cytoplasm)	

mesoscopic	Bloch-Torrey	equation

     micro
 molecules,

      meso
 cells,

     macro
 resolution,

arXiv:1612.02059	(2016)



“MRI”	&	“microstructure”	in	PubMed
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Current state of dMRI in clinic
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Clinical applications: Empirical so far

• Disease	processes	associated	with	diffusion	abnormality:
Ischemia,	Demyelinating	lesions,	Tumors,	Seizures,	Drug	toxicity,	
Abscess,	Marrow	abnormalities,	Prion	disease,	…

• Biophysical	mechanisms	underlying	diffusion	changes	are	often	
unclear;	sensitive	but	not	yet	specific!

• E.g.,	the	cause	of	the	drop	in	the	diffusion	observed	in	acute	stroke	is	
still	under	debate:	cell	swelling,	exchange,	active	transport	
mechanisms,	axonal	beading,	etc. Benveniste et	al,	Stroke 23	746	(1992);	

Nevo et	al,	NMR	Biomed 23	734	(2010);	
Ackerman	et	al,	NMR	Biomed 23	725	(2010);	
Budde MD	et	al	PNAS	107	14472	(2010);	
Fieremans E	et	al.	ISMRM	(2012),	3600;	
Hui ES	et	al.	Stroke. 43	2968	(2012);
Novikov	DS	et	al,	PNAS	111,	5088	(2014)	



dMRI Goal: “to see the invisible”

To become specific to pathological changes at the 
mesoscopic scale, ~ 1 – 50 μm

• Brain: Demyelination,	axonal	loss,	inflammation…	
−	AD,	MS,	TBI,	stroke

• Body: Cell	size,	membrane	permeability,	cell	density…	
−	Tumor	grading	(e.g.	prostate)
−	Atrophy,	rehabilitation,	dystrophy	(muscle)



Muscle	fiber	x-section Neuronal	white	matter	fiber	x-section

ORGANIZATION OF RHESUS MONKEY COMMISSURES 527 

Fig. 5. A A series of desmosomal junctions (arrows) between two 
intermediate filament rich glial processes in the dorsal lamina of the 
hippocampat commissure glial capsule. Several medium-sized my- 
elinated axons as well as two very small unmyelinated axons are seen 
immediately adjacent to these interconnected glial processes. Magnifi- 
cation 21,000~. B: Apposition of two filamentous processes that  form a 
villus in the ventral lamina of the glial capsule that  delimits the hippo- 

campal cornmissure. The electron density of glial processes in this region 
varies from a dark granular matrix (left) to a light flocculent matrix 
(right). Often, the membranes of the processes seem to fuse for a moder- 
ate distance (arrows) and then separate again, perhaps forming tight or 
gap junctions. The external surface of the ventral lamina is bounded by 
a basal lamina, and the individual processes are attached to i t  via hemi- 
desmosomes (arrowheads) Magnification 30,000~. 

Fig. 6. A: Electron micrograph of axons in sector 2 of the corpus callosum in an adult rhesus monkey. 
Notice the clusters of small unmyelinated axons (asterisks). B Electron micrograph of axons in sector 6 of 
the same corpus callosum shown in A. In the center of this micrograph is an example of the very large axons 
encountered only in sectors 6,7, and 10. Both micrographs, 8,500~ magnification. 

1	major	direction

Similar	diffusion	
tensor	eigenvalues

Can we at least distinguish b/w 2 tissues?



 

 

 

 

Focus	on	large-scale	fluctuations

• short	scale	features	gradually	lost
• long	range	correlations	survive

Neuronal	white	matter	fiber	tract	x-sectionMuscle	fiber	x-section
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So, can we distinguish b/w these 2 tissues?
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Cortical	gray	matter	(rat)
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Oscillating Gradient Measurements of Water Diffusion in
Normal and Globally Ischemic Rat Brain
Mark D. Does,1* Edward C. Parsons,2 and John C. Gore1–3

Oscillating gradients were used to probe the diffusion-time/
frequency dependence of water diffusion in the gray matter of
normal and globally ischemic rat brain. In terms of a conven-
tional definition of diffusion time, the oscillating gradient mea-
surements provided the apparent diffusion coefficient (ADC) of
water with diffusion times between 9.75 ms and 375 !s, an
order of magnitude shorter than previously studied in vivo. Over
this range, ADCs increased as much as 24% in vivo and 50%
postmortem, depending on the nature of the oscillating gradi-
ent waveform used. Novel waveforms were employed to sample
narrow frequency bands of the so-called diffusion spectrum.
This spectral description of ADC includes the effects of restric-
tion and/or flow, and is independent of experimental parame-
ters, such as diffusion time. The results in rat brain were found
to be consistent with restricted diffusion and the known micro-
anatomy of gray matter. Differences between normal and post-
mortem data were consistent with an increase in water restric-
tion and/or a decrease in flow, and tentatively suggest that
physical changes following the onset of ischemia occur on a
scale of about 2 !m, similar to a typical cellular dimension in
gray matter. Magn Reson Med 49:206–215, 2003.
© 2003 Wiley-Liss, Inc.
Key words: MRI; diffusion; restriction; ischemia; oscillating gra-
dient

When the Brownian motion of a molecule is physically
impeded or hindered, its effective rate of self-diffusion, or
apparent diffusion coefficient (ADC), is reduced, and the
diffusion is said to be restricted. In tissues, restriction is
thought to be a significant mechanism affecting contrast in
diffusion-weighted imaging, in both normal and patholog-
ical states. In particular, restriction of water by cell mem-
branes is believed to be the dominant mechanism causing
diffusion anisotropy in the nervous system (1), and it has
also been postulated to play a central role in the marked
decline of water ADC in neural tissue following the onset
of ischemia (2–4). However, due to hardware limitations,
there has been limited direct investigation in vivo of the
effects of restrictions on diffusion measurements with

MRI. Such observations can be made by measuring ADC as
a function of diffusion time.

In an NMR diffusion measurement, if the time allowed
for spins to migrate is brief enough, restriction will have
little impact on the measurement and the ADC will closely
reflect the intrinsic diffusion coefficient. As the diffusion
time increases and the molecules interact more often with
the physical restrictions, the ADC declines toward an as-
ymptotic value. Several such measurements have been
made on excised tissue samples (5–9), typically using
spectrometers equipped with strong gradients (50–500
gauss/cm), which allow ADC measurements at relatively
short diffusion times.

In vivo measurements, however, have been limited by
gradient strengths that are typically one or two orders of
magnitude smaller, making the minimal diffusion time
relatively long. In RIF-1 tumors, Helmer et al. (10) found
that the ADC of water depended significantly on diffusion
times down to 8.0 ms (10). Such a dependence has not
been clearly demonstrated in the brain. Niendorf et al. (11)
observed a decline in a diffusion-weighted signal from rat
brain at diffusion times of 5.9–3.4 ms, although in that
study the b-values were very small and the ADC values
were not presented. Horsfield et al. (12) reported water
ADC dependence on diffusion time, but used measure-
ments that varied b-value and diffusion time simulta-
neously (12), which complicates the interpretation be-
cause ADC in brain tissue has been shown to depend on
b-value (13). Moonen et al. (14), and later van Gelderen et
al. (15) studied healthy and infarcted cat brains in vivo at
diffusion times of 20 ms to 2 s, and found no significant
ADC changes. Le Bihan et al. (16) measured ADCs in
human brain at diffusion times of 16–79 ms, and found no
change. Most recently, Clark et al. (17) measured mean
diffusivity and fractional anisotropy with diffusion times
as short as 8 ms, and also found no significant changes.
Presumably, in these latter cases, a diffusion-time depen-
dence of ADC was not found because the diffusion times
employed were not short enough, and only the asymptotic
behavior was measured.

One approach by which to reduce the diffusion time of
ADC measurements is the so-called “oscillating gradient”
technique (18), which was recently employed to study
restriction in a model system of packed microspheres (19).
This approach essentially implements a succession of dif-
fusion-weighting periods, which mitigates the reduced dif-
fusion weighting that accompanies a shorter diffusion time
with a fixed gradient amplitude. However, only in the case
of unrestricted Brownian motion can these multiple diffu-
sion-weighting periods be considered independent
(20,21). For this reason, as discussed in the Theory section,
the signal attenuation due to diffusion weighting with a
given b-value should be described in terms of a spectrum
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p = 0,  ϑ = (0+3)/2 = 3/2
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Why	ϑ = ½ ?  Disorder along neurites

reperfusion was initiated after 65.1 ! 1.7 min of MCAO (Fig.
5A,B). In animals in which the structure improved with reperfu-
sion (n " 8), the recovered area defined by where the percentage
of blebbed dendrites was not significantly different from the pre-

occlusion control extended #300 !m lat-
eral of the structural border toward the
MCAO stroke core (Fig. 5D). For an exam-
ple of lateral dendrites (toward the MCA
core region) that fail to recover with reper-
fusion, see Figure 5A. The partially recov-
ered area (defined by where the percentage
of blebbed dendrites was significantly dif-
ferent from both occlusion and the preoc-
clusion control) extended from 300 to 600
!m lateral of the structural border (lim-
ited by the size of craniotomy window).
Dendrites toward the lateral aspect of the
craniotomy did not recover as well with
reperfusion (Fig. 5D). For comparison of
different animals, all distance measure-
ments were made from the approximate
border of structural damage during
MCAO (Fig. 5D). Recovery of structure
began gradually after #20 –30 min of
reperfusion and in some cases resulted in
the appearance of dendrites that were
nearly identical with prestroke conditions
(Fig. 5B,C). In all eight animals that were
reperfused and showed recovery, the re-
covered dendritic structure was main-
tained for at least 3 h after the beginning of
the initial ischemic period.

Irreversible structural damage within
the ischemic core
A potential limitation of two-photon mi-
croscopy was that it was difficult to simul-
taneously position both laser Doppler
probes and two-photon imaging windows
over the most lateral aspects of the cortex.
In addition, curvature of the lateral cortex
made it difficult to create a cranial window
that permitted both the medial penumbra
and the lateral ischemic core to be imaged
using two-photon microscopy. Therefore,
we used a histological analysis to establish
whether core regions of the MCAO-
induced stroke (including the more lateral
cortical region and the striatum) would
also recover their dendritic structure dur-
ing confirmed reperfusion. After reperfu-
sion, the ischemic penumbra exhibited re-
covered dendritic structure that we
observed during live imaging. In contrast,
after reperfusion we did not observe intact
structure within core regions by histologi-
cal analysis in all animals (n " 5) that
showed recovery in the penumbra area (by
live imaging) consistent with our previous
histological work (Enright et al., 2007)
(Fig. 6; supplemental Fig. 2, available at
www.jneurosci.org as supplemental mate-
rial). In our previous study in the core re-

gion (produced by irreversible MCAO), we showed that wide-
spread loss of spines occurred in addition to blebbing of dendrites
(Enright et al., 2007). Here, we find that dendrites in these corti-
cal regions that were on average $3.8 ! 0.3 mm lateral from

Figure 5. Two-photon imaging of local changes in blood flow and dendritic structure before, during, and after MCAO. A, Two-photon
projection images of dendritic structure before, during, and after MCAO. Each image was made from a projection derived from five Z
sections. They are oriented with the right side being more lateral, which is further into the MCA territory. The middle panels were taken
during26 – 64minafterMCAO.Thedashedlineintheleftpartshowsthestructuraldamageborder.Asonemovestotheleftawayfromthe
MCAcore,thestructureimproves, indicatingatransitionzoneorborder.TotherighttowardtheMCAcore,degradationofthestructurewas
observed. The dashed line over the vessel indicates an artery segment that was not completely blocked during MCAO (see C) and in which
intact dendrites were observed. B, Close images of dendritic structure within the dashed area in A, indicating intact structure before MCAO.
In the middle panel, a projection image is shown 52 min after MCAO and extensive dendritic blebbing is observed. A small white arrow
shows a region in which dendrites were relatively spared, possibly because of residual blood flow in the vessel indicated below in C (laser
speckle images). In the right panel, the animal was reperfused and a significant recovery of dendritic structure was observed. C, Laser
speckle image displayed as speckle contrast before and 15 min after MCAO. During MCAO, a large reduction in blood flow is indicated by
lighter gray level tones. An artery segment partially blocked during MCAO is indicated by white and black arrows in pre-MCAO and MCAO
panels, respectively. The same vessel is indicated in A (during MCAO) in dendrite images by a white dashed line. D, Quantification of
dendriticblebbing(mean!SEM)ineightanimalsbefore(pre),duringMCAOstroke(str),andafterreperfusion(reper).Datashownreflect
the percentage of blebbed dendrites found at these various times at different distances from the apparent border of dendritic damage. The
percentages of dendritic blebbing are significant different between prestroke control and during MCAO, during MCAO, and after reperfusion
at all distances ( p % 0.05, by two-way ANOVA). Between prestroke control and after reperfusion, it is significantly different at 450 and
$600 !m from the structural border, but not at other distances. It indicates that the recovery within 300 !m lateral to the dendritic
damage border was almost complete.

Li and Murphy • Recovery of Dendrites after Prolonged Stroke J. Neurosci., November 12, 2008 • 28(46):11970 –11979 • 11975

Li,	Murphy,	J	Neurosci 2008	
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FIG. 4: Disorder types for d > 1.

dom bonds. These two situations are representatives of
the equivalence class

�
1, 1

2

�
of random bond and random

jump models[15, 16]. Other representatives include seg-
ments with di�erent local di�usion coe�cient, which can
be thought of as a varying density of microscopic barriers.

Another class of ordering,
�
1, 1

�
, is represented by the

periodic, or, more generally, hyperuniform [10] systems,
for which the variance (�N)2 ⇠ 1 is not extensive. An ex-
ample is a crystal lattice with independently fluctuating
positions around equilibrium periodic sites. Technically,
the density correlator is a sequence of infinitely narrow
Bragg peaks, with �(q)|q�0 = 0.

More exotic ordering types emerge when the variance
(�N)2 ⇠ L3�µ, 1 < µ < 2, grows faster than L, corre-
sponding to � = µ�1

2 . This situation can be realized by
independently added segments drawn from a Lévy distri-
bution p(a) ⇠ 1/a1+µ, in which case the density correla-
tor diverges as �(q) ⇠ |q|µ�2. Again, instead of allowing
segments with diverging variance �2 = 1, one could vary
the permeabilities on a regular lattice in such a way that
a number of elementary barriers placed at each site has
an infinite variance.

We show that the di�usion coe�cient D(t) and the kur-
tosis K(t) are very sensitive to how spatially correlated
the barriers are. This correlation is quantified in terms
of the fluctuation of the number N(t) of the barriers
falling within the di�usion length L(t) in agreement with
Eq. (1). We relate this scaling to the probability density
function (PDF) p(a) of the intervals am = xm+1 � xm

between successive positions xm of the barriers; this rela-
tion is valid whenever a sample is made of random build-
ing blocks (e.g. cells). Depending on the variance �2 of
p(a), we classify the disorder in their positions as falling
into the three types (Fig. 2): (a) order, � ! 0, corre-
sponding to perfect correlations (applicable to any peri-
odic arrangement of barriers, with one or more barriers

per unit cell); (b) strong disorder, � ! 1, correspond-
ing to the “fat tail” in p(a) ⇠ a�(1+µ), 1 < µ < 2,
when the barriers come in bunches separated by wide
gaps; (c) most common case of a moderate disorder char-
acterized by finite �. These ordering types can be distin-
guished by the exponent � of the power-law decrease of
the relative fluctuation �N/ �N� ⇠ L��(t) in the number
of barriers falling within the di�usion length, leading to
(D(t) � D1)/D1 ⇠ t��.

is fully defined by the mean ā =
�

ap(a) da and per-
meability �, and is insensitive to the spatial arrangement
of the barriers, we find that the way it is approached
at large time t � ā2/D1 is sensitive to the disorder,
with the type (b) yielding the slowest decrease, � = µ�1

2 ,
0 < � < 1

2 ; type (a) the fastest one, � = 1; and the
type (c) corresponding to � = 1

2 with the exact prefactor
scaling as �2,

D(t) = D1

�
1 + �

�
�

1 + �

�3
2

�
2

⇡

⌧r

t

�
, � =

�2

ā2
(3)

where ⌧r = V/(S�) = ā/(2�) is the residence time in a
typical interval (“pore”).

Remarkably, the finite-variance limit (3) is uniquely
determined by the mean and the variance of p(a), and
is independent of any other features of this PDF. This
rare case of a relative universality of di�usion properties
may be utilized as a practical way to quantify the degree
of ordering of the restrictions in quasi-one-dimensional
samples, by combining the short-time limit of D(t) yield-
ing D0 and S/V = 2/ā [5], with the long-time limit,
Eqs. (2) and (3), yielding the membrane permeability
and the variance in the inter-membrane intervals.
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FIG. 1: Time-dependent diffusion distinguishes between structural
complexity classes in one dimension, represented by the placement
of identical permeable barriers with the same mean density. a,
Short-range disorder (blue), hyperuniform disorder (green), and or-
der (red). b, The barrier densities have qualitatively different large-
scale fluctuations, reflected in the small-k behavior of their density
correlator �(k) ⇠ k

p, with p = 0, 2 and1 (see text). c, Numerical
results confirming the relation (3). The time-dependence (2) clearly
distinguishes between the three arrangements, whereas the valueD1
is the same for all of them. The dashed lines are the exact power laws
from equation (4), and the exponential decrease is from the exact so-
lution (see text and the Supplementary information); ⌧

r

= ā/2.

corresponding to p = 1, Dinst(t) � D1 decreases exponen-
tially (faster than any power law), corresponding to � = 1.
We now outline the main disorder classes in d dimensions.
The short-range disorder is characterized by the finite corre-

lation length lc, beyond which the disorder correlator �(r) !
0, and the limit of �|k�0 is finite, corresponding to p = 0.
In this case, the variance �(�D)2�|L � (lc/L)d in equation
(5) in the Methods section decreases in the same way as the
relative fluctuation of the structural heterogeneity according
to the central limit theorem, as long as the diffusion length
L(t) � lc. This simple picture ofDinst(t) relying on typical,
rather than optimal, structural fluctuations (as long as D1 is
finite) yields � = d/2 in d dimensions27,28. The examples are
the first case in Fig. 1, or a medium made of randomly placed
domains of two diffusivity values.
When the structure is more homogeneous (e.g. periodic
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across the fibers. Note the tight cell packing achieved by straight cell
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or hyperuniform29), the structural correlations are suppressed,
� ⇠ kp with p > 0, hence the variance �(�D)2�|L narrows
down faster than L�d with increasing L, yielding � > d/2 in
d dimensions (see Fig. 1). In the “extreme” case of a strictly
periodic system in any d, coarse-graining beyond the micro-
scopic scale of a largest lattice vector does not contribute
to the structural fluctuations, �(k) ⌘ 0 (p = 1). In this
case,D(t) decays andDinst(t) reachesD1 exponentially fast
(� = 1) already at the microscopic scale, with the decay rate
determined by the details of the lattice. The hyperuniform
media, corresponding to � ⇠ kp with 0 < p < 1, such as
a perturbed lattice (p = 2) or a maximally random jammed
state29 with p � 1, fall in-between the short-range and the
periodic cases. For them, equations (1) and (2) are the power
laws with d/2 < � < 1.
Conversely, stronger structural fluctuations lead to � < d/2
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FIG. 1. Time-dependent diffusion distinguishes between structural
complexity classes in one dimension, represented by the placement
of identical permeable barriers with the same mean density. (A)
Order (red), hyperuniform disorder (green), short-range disorder
(blue), and strong disorder (magenta). (B) The barrier densities have
qualitatively different large-scale fluctuations, reflected in the small-
k behavior of their density correlator �(k) ⇠ k

p (see text). (C)
Numerical results confirming the relation (3). The time-dependence
(2) clearly distinguishes between the four arrangements, while the
value D1 is the same for all of them. The dashed lines are the exact
power laws from equation (9), and the exponential decrease is from
the exact solution (see text and Supplementary material); ⌧

r

= ā/2.

equation (3). Finally, strong disorder, with structural fluctua-
tions growing faster with volume than prescribed by the cen-
tral limit theorem, is reflected in a diverging �|k�0, i.e. the
exponent p < 0, and � < d/2 (weak self-averaging). Here,
we used the Lévy (fat tail) distribution P (a) ⇠ 1/a1+µ with
µ = 7/4 for the successive barrier intervals, such that the vari-
ance �(a � ā)2�P diverges. This yields p = µ � 2 = �1/4
and � = (µ � 1)/2 = 3/8 in agreement with equation (3).

Higher dimensions d > 1 provide more ways to realize
the same basic disorder classes. Various periodic arrange-
ments would yield the same qualitative behavior, p = 1 and
� = 1. Hyperuniform disorder can be realized for different
p > 0. While p = 2 when the restrictions are independently
displaced away from the lattice sites, p � 1 for a maximally
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random jammed state11. Equation (3) provides the possibility
to observe the jamming transition, from p = 0 to p = 1, via
diffusion in-between packed impermeable beads.

Remarkably, higher dimensions open up ways to realize
strong structural fluctuations, with diverging �(k), corre-
sponding to p < 0 and � < d/2, without a need to invoke a
Lévy distribution. A negative p (Fig. 2) can be achieved very
naturally, by organizing microstructure in terms of randomly
placed and oriented regular components (e.g. infinite lines,
planes) with dimensionality ds < d, in which case p = �ds (a
negative integer), and 2� corresponding to their co-dimension.
The first such example14 is the extended disorder realized by
random permeable hyperplanes, ds = d� 1, Fig. 2a, resulting
in � = 1/2 in any d. Likewise, randomly placed and oriented
rods, ds = d � 2, embedded in d = 3 dimensions (Fig. 2c)
would realize p = �1 and � = 1 < 3/2. The above ex-
amples merely represent each disorder class; e.g. the “rods”
from Fig. 2c can be structurally complex, permeable or imper-
meable. What matters is the long-range correlations. Clearly,
for components with finite extent, the disorder becomes short-
ranged, � ! d/2, when the rms molecular displacement ex-
ceeds their size.

Above, we assumed that the molecules (the random walk-
ers) can spread everywhere. When impermeable boundaries
split the space into disconnected parts, equation (3) applies
separately to the contribution from each part, which then add
up. The most relevant disorder contribution is the one with the
smallest �, yielding the slowest power law tails (1) and (2).

As a result, measuring the exponent � with any time-
dependent diffusion technique allows one to determine the
disorder universality class via the exponent p using the rela-
tion (3). Let us now apply this framework to diffusion mea-
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complexity classes in one dimension, represented by the placement
of identical permeable barriers with the same mean density. (A)
Order (red), hyperuniform disorder (green), short-range disorder
(blue), and strong disorder (magenta). (B) The barrier densities have
qualitatively different large-scale fluctuations, reflected in the small-
k behavior of their density correlator �(k) ⇠ k

p (see text). (C)
Numerical results confirming the relation (3). The time-dependence
(2) clearly distinguishes between the four arrangements, while the
value D1 is the same for all of them. The dashed lines are the exact
power laws from equation (9), and the exponential decrease is from
the exact solution (see text and Supplementary material); ⌧

r

= ā/2.

equation (3). Finally, strong disorder, with structural fluctua-
tions growing faster with volume than prescribed by the cen-
tral limit theorem, is reflected in a diverging �|k�0, i.e. the
exponent p < 0, and � < d/2 (weak self-averaging). Here,
we used the Lévy (fat tail) distribution P (a) ⇠ 1/a1+µ with
µ = 7/4 for the successive barrier intervals, such that the vari-
ance �(a � ā)2�P diverges. This yields p = µ � 2 = �1/4
and � = (µ � 1)/2 = 3/8 in agreement with equation (3).

Higher dimensions d > 1 provide more ways to realize
the same basic disorder classes. Various periodic arrange-
ments would yield the same qualitative behavior, p = 1 and
� = 1. Hyperuniform disorder can be realized for different
p > 0. While p = 2 when the restrictions are independently
displaced away from the lattice sites, p � 1 for a maximally

A B

C D 10
−1

10
0

10
−2

10
0

k

�
(k

)

k�2

k�1

k�1

FIG. 2. Extended structural disorder classes, d > 1. (A) Randomly
placed and oriented permeable barriers (lines), d

s

= 1 in d = 2

dimensions. (B) Randomly placed and oriented rods, d

s

= 1 in d =

3. (C) Randomly placed and oriented permeable barriers (planes),
d

s

= 2 in d = 3. (D) Structure correlator �(k) ⇠ k

p (numerically
calculated and angular averaged, arb. units) for (A) (magenta), (B)
(grey), and (C) (green) exhibits the negative exponent p = �d

s

.

random jammed state11. Equation (3) provides the possibility
to observe the jamming transition, from p = 0 to p = 1, via
diffusion in-between packed impermeable beads.

Remarkably, higher dimensions open up ways to realize
strong structural fluctuations, with diverging �(k), corre-
sponding to p < 0 and � < d/2, without a need to invoke a
Lévy distribution. A negative p (Fig. 2) can be achieved very
naturally, by organizing microstructure in terms of randomly
placed and oriented regular components (e.g. infinite lines,
planes) with dimensionality ds < d, in which case p = �ds (a
negative integer), and 2� corresponding to their co-dimension.
The first such example14 is the extended disorder realized by
random permeable hyperplanes, ds = d� 1, Fig. 2a, resulting
in � = 1/2 in any d. Likewise, randomly placed and oriented
rods, ds = d � 2, embedded in d = 3 dimensions (Fig. 2c)
would realize p = �1 and � = 1 < 3/2. The above ex-
amples merely represent each disorder class; e.g. the “rods”
from Fig. 2c can be structurally complex, permeable or imper-
meable. What matters is the long-range correlations. Clearly,
for components with finite extent, the disorder becomes short-
ranged, � ! d/2, when the rms molecular displacement ex-
ceeds their size.

Above, we assumed that the molecules (the random walk-
ers) can spread everywhere. When impermeable boundaries
split the space into disconnected parts, equation (3) applies
separately to the contribution from each part, which then add
up. The most relevant disorder contribution is the one with the
smallest �, yielding the slowest power law tails (1) and (2).

As a result, measuring the exponent � with any time-
dependent diffusion technique allows one to determine the
disorder universality class via the exponent p using the rela-
tion (3). Let us now apply this framework to diffusion mea-
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FIG. 1: Time-dependent diffusion distinguishes between structural
complexity classes in one dimension, represented by the placement
of identical permeable barriers with the same mean density. a,
Short-range disorder (blue), hyperuniform disorder (green), and or-
der (red). b, The barrier densities have qualitatively different large-
scale fluctuations, reflected in the small-k behavior of their density
correlator �(k) ⇠ k

p, with p = 0, 2 and1 (see text). c, Numerical
results confirming the relation (3). The time-dependence (2) clearly
distinguishes between the three arrangements, whereas the valueD1
is the same for all of them. The dashed lines are the exact power laws
from equation (4), and the exponential decrease is from the exact so-
lution (see text and the Supplementary information); ⌧

r

= ā/2.

corresponding to p = 1, Dinst(t) � D1 decreases exponen-
tially (faster than any power law), corresponding to � = 1.
We now outline the main disorder classes in d dimensions.
The short-range disorder is characterized by the finite corre-

lation length lc, beyond which the disorder correlator �(r) !
0, and the limit of �|k�0 is finite, corresponding to p = 0.
In this case, the variance �(�D)2�|L � (lc/L)d in equation
(5) in the Methods section decreases in the same way as the
relative fluctuation of the structural heterogeneity according
to the central limit theorem, as long as the diffusion length
L(t) � lc. This simple picture ofDinst(t) relying on typical,
rather than optimal, structural fluctuations (as long as D1 is
finite) yields � = d/2 in d dimensions27,28. The examples are
the first case in Fig. 1, or a medium made of randomly placed
domains of two diffusivity values.
When the structure is more homogeneous (e.g. periodic
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or hyperuniform29), the structural correlations are suppressed,
� ⇠ kp with p > 0, hence the variance �(�D)2�|L narrows
down faster than L�d with increasing L, yielding � > d/2 in
d dimensions (see Fig. 1). In the “extreme” case of a strictly
periodic system in any d, coarse-graining beyond the micro-
scopic scale of a largest lattice vector does not contribute
to the structural fluctuations, �(k) ⌘ 0 (p = 1). In this
case,D(t) decays andDinst(t) reachesD1 exponentially fast
(� = 1) already at the microscopic scale, with the decay rate
determined by the details of the lattice. The hyperuniform
media, corresponding to � ⇠ kp with 0 < p < 1, such as
a perturbed lattice (p = 2) or a maximally random jammed
state29 with p � 1, fall in-between the short-range and the
periodic cases. For them, equations (1) and (2) are the power
laws with d/2 < � < 1.
Conversely, stronger structural fluctuations lead to � < d/2
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s

.

shown in Fig. 2a for d = 2. The short-range disorder in D(r)
yields (13, 14) the exponent # = d/2 in agreement with equation
[1]. All ordered (periodic) arrangements of permeable or imperme-
able restrictions to diffusion in any d (e.g. Fig. 2b) are characterized
by the vanishing �(k) for sufficiently small k, formally correspond-
ing to p = 1, and yielding an exponentially fast decay of the mem-
ory in diffusion, # = 1. (Paraphrasing (15), ordered structures are
all alike; every disorder class is disordered in its own way.) The hy-
peruniform disorder can be realized for different p > 0. While p = 2

when the restrictions are independently displaced away from the lat-
tice sites in any d, p ' 1 for a maximally random jammed state in
d = 3, ref. (12). Hence, equation [1] provides a possibility to ob-
serve the jamming transition, from p = 0 at low packing density, to
p ' 1, via measuring diffusion in-between packed hard spheres.

The extended disorder classes, Fig. 2c,d, are inherent to d > 1.
They open up a natural way to realize strong disorder, with diverging
�(k), Fig. 2e, corresponding to p < 0 and # < d/2, without a need
to invoke a L«evy distribution (as it had to be done in Fig. 1). A neg-
ative p can be achieved by organizing structure in terms of randomly
placed and oriented regular components (e.g. infinite lines, planes)
with dimensionality d

s

< d, in which case p = �d

s

(a negative in-
teger), the structural correlator �(r) ⇠ 1/r

d�ds decays slower than
1/r

d, and 2# corresponding to their co-dimension d � d

s

. The first
such example (16) is the extended disorder realized by random per-
meable hyperplanes, d

s

= d � 1, Fig. 2c, resulting in # = 1/2 in
any d. Likewise, randomly placed and oriented rods, d

s

= d � 2,
embedded in d = 3 dimensions (Fig. 2d) would realize p = �1 and
# = 1 < 3/2. For the structural components with finite extent l

c

,
the disorder becomes short-ranged, p ! 0 and # ! d/2, when the
diffusion length exceeds their size (the correlation length l

c

).
Of course, from a long-time measurement it is impossible to de-

duce how exactly a given structural universality class is realized at
short distances. Instead of thin barriers in Fig. 1, we could have
chosen finite intervals with different diffusion coefficient, or smooth
variations of local diffusion coefficient D(x), realizing the same low-
k behavior of �(k). Likewise, the lines, planes or rods from Fig. 2c,d
could be structurally complex at short distances. The information de-

a
200 400 600 800

0.2

0.4

0.6

0.8

1

1.2

t, ms

D
(t

),
µ
m

2
/m

s

�1, TG

�1, H

�?, TG

�?, H

b
0 0.05 0.1 0.15 0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t�1/2, ms�1/2

D
(t

),
µ
m

2
/m

s

�?, TG

�?, H

c d 10
−2

10
−1

10
2

10
3

10
4

k, a.u.

Γ
(k
),

a.
u.

k−1

Fig. 3. Time-dependent diffusion transverse to muscle fibers (17) (d = 2) re-
veals extended structural disorder class of d
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= 1, provided by the muscle
fiber membrane (sarcolemma). a, The longitudinal, �
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, and the transverse, �?,
diffusion tensor components for calf tongue genioglossus (TG, blue circles) and
heart (H, red diamonds). Solid lines are the fit of �?(t) to SI equation [ 39 ] with
d = 2. For fit results see SI Table 1. b, Data for �?(t) replotted as function of
t�1/2 consistent with # = 1/2. Equation [ 1 ] yields p = �1; hence, d

s

= 1
(see text and Fig. 2). c, Muscle slice across the fibers. d, �(k) calculated from
image intensity in c. Tight cell packing achieved by straight cell walls in c results
in exponent p = �1 of the extended disorder class of Fig. 2c, yielding # = 1/2.

duced about the global organization should practically complement
our knowledge about the mesoscopic structure and the dimensional-
ity d, as described in the subsequent in vivo examples.

Above, we assumed that the molecules (the random walkers) can
spread everywhere. When impermeable boundaries split the space
into disconnected parts, equation [1] applies separately to the contri-
bution from each part, which then add up. The most relevant disorder
contribution is the one with the smallest #, yielding the slowest power
law tails [2] and [3].

Extended disorder provided by muscle fiber walls
In Fig. 3, we analyze the time-dependence of diffusion tensor eigen-
values in the fresh ex vivo muscle tissue samples measured by Kim
et al. (17). The nondispersive eigenvalues �

1

correspond to the unre-
stricted diffusion along the fibers. The transverse components �?(t)

in the two-dimensional fiber cross-section, Fig. 3c, are strongly dis-
persive. Representing the data as function of t

�1/2, we observe the
asymptotic tail [3]. Indeed, the fit of �?(t) to equation [5] yields
# ⇡ 0.5 for both tongue and heart (SI Fig. 7), exemplifying weak
self-averaging, # < d/2, in contrast to # = 1 expected for the d = 2

short-range disorder. We thus conclude that the restrictions to water
diffusion are strongly spatially correlated on the scale of the diffusion
length (up to ⇠ 30 µm in this measurement), which puts them into
the extended disorder class of Fig. 2c with d

s

= 1 in d = 2.
In SI, we argue that the relevant restrictions are in fact mus-

cle cell membranes (sarcolemma), and quantify their permeability
and cell size (SI Table 1). The good agreement between the fit pa-
rameters and histological values can be rationalized by comparing a
typical histological slice transverse to muscle fibers (Fig. 3c) with
the random barriers in two dimensions (Fig. 2c). Tight packing of
muscle cells makes the fiber walls fairly flat and spatially correlated
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The SD and mean of each axon’s intervals, plotted in Fig. 4,
were strongly correlated (Pearson’s r ! 0.91). Linear regression
gave a line with a slope of 0.79 (99% confidence interval:
0.70–0.88), crossing the x axis at 1.2 !m. This relationship
reveals two novel properties. It shows that the variability in
varicosity spacing scales with the mean spacing, independent of
axon type; axons apparently share a fundamentally similar
varicosity distribution pattern despite average differences in
varicosity spacing. It also clarifies the degree of randomness
in varicosity spacing. The SD!mean ratio is the CV, a statistical
estimator of variability whose value (and slope in the plot) is 1
if spacing is purely random (dashed identity line in Fig. 4) and
0 if perfectly regular. The data fall on a line whose slope was
slightly but significantly (at a "99% confidence interval level)
less than unity. The line appears right-shifted, by an amount
similar to the gap in the interval distributions noted above. This
‘‘refractory distance’’ effect reduced the CVs to as low as 0.5 for
the most densely varicose axons, akin to the regularizing effect
of a refractory period on interspike intervals.

Are varicosities distributed evenly along axons, or organized
into patterns? Although methods for interval analysis including
auto- and serial correlation (data not shown; see also refs. 18, 24)
did not detect obvious, repeated patterns, they could easily have
missed gradients, clusters, and other heterogeneities. We there-
fore used window-based methods. For each axon we counted
varicosities in consecutive windows, obtaining the variance and
mean for different window lengths. The variance!mean ratio is
the index of dispersion (Fano factor), a statistical estimator of
homogeneity in event distributions. For a Poisson process it
equals 1 for any window length; higher values reflect heteroge-
neity and lower values homogeneity. In the example of a single
axon shown in Fig. 5A (F), indices were clearly below 1 and
correlated negatively with window length for most window sizes,
up to at least 20 !m (in this case values also trended upward for
the longest windows). Rank-ordering the sequence of this axon’s
set of intervals demonstrated the maximal possible effect of
heterogeneity; i.e., how high the indices could have been (gray

circles). With this arrangement, an idealized gradient, values
increased steeply above 1 for windows over 12 !m. Conversely,
random shuffling of the sequence demonstrated the maximal
possible effect of homogeneity; i.e., how low the indices could
have been (E). This gave values closely resembling the original
data. Thus, varicosities were homogeneously dispersed along this
axon. Most axons gave similar results. As summarized in Fig. 5B,
indices averaged well below 1 for all window lengths, were
correlated negatively with window length (46!56 axons; P #
10$5) and reached minimum values with windows greater than
10 !m. The axons’ indices also correlated positively with their
mean varicosity spacing (Pearson’s r ! 0.4), a reflection of the
regularizing effect of the refractory distance on spacing. Finally,
we attempted to detect subtle clustering, by simulating a large
number of axons, with intervals identical to the originals in value
but random in sequence, and comparing the maximal varicosity
counts for each axon in the simulated and original groups (see
Materials and Methods). The original axons differed significantly
for 5-!m window (P ! 0.002) but not other windows (7.5–85
!m). Thus, for these axons, clustering was a relatively weak effect
detectable only at the population level. Lack of evidence for
strong gradients or clusters here does not preclude their exis-
tence on longer scales. Indeed, proximodistal varicosity spacing
gradients over millimeters have been reported for PFs (9); such
gradients would have been mild (#10%) on the distances
examined here.

Discussion
By comparing varicosity spacing along different types of central
unmyelinated axons, we identified aspects of variability and
reliability at several levels. On short scales, varicosity spacing was
highly variable but not simply random. Similar patterns are
evident in data from neocortical axons (18, 24, 25), hippocampal
axons in culture (26), and corticostriatal axons (27). Hellwig et
al. (18) noted that short-interval gaps reflect the finite lengths

Fig. 4. Intervaricosity interval analysis. SD vs. mean spacing plotted for all
axons. Identity line (dashed) with slope ! 1 indicates Poisson relationship. Line
through data, y ! 0.79x $ 0.91, was obtained by linear regression and
extrapolated to the x axis. Also shown are the %99% confidence intervals.
(Inset) Representative interval distributions for three axons, including a PF and
fibers in CA1 and LM, plotted as survival functions (inverse rank-ordered sets
of intervals); for any distance in micrometers, P is the fraction of varicosities
separated by at least that amount. Arrow points to gaps in distributions at
shortest distances.

Fig. 5. Window analysis. (A) Index of dispersion (variance!mean) vs. window
length, for a single axon (F). For comparison, the axon’s sequence of the
intervaricosity intervals was randomly shuffled (E) or ordered by rank (gray
circles). (B) Overall averages of all axons’ indices of dispersion, for different
window lengths, shown with 5–95% confidence intervals.
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Along unmyelinated central axons, synapses occur at focal swell-
ings called axonal varicosities (boutons). The mechanisms regulat-
ing how frequently synapses and varicosities occur along axons
remain poorly understood. Here, to investigate varicosity distri-
bution patterns and the extent to which they may be conserved
across different axons, we analyzed varicosity numbers and posi-
tions along fluorescently labeled axon branches in hippocampal
area CA1 (CA3-to-CA1 ‘‘Schaffer collateral’’ axons) and five other
synaptic regions of rat hippocampus and cerebellum. Varicosity
spacing varied by region; e.g., 3.7 ! 0.6 "m (mean ! SD) for
CA3-to-CA1 axons and 5.2 ! 1.0 "m for cerebellar parallel fibers.
Surprisingly, when 56 axons from these different regions were
pooled into a single heterogeneous group, a general relationship
emerged: the spacing variability (SD) was a constant fraction of the
mean spacing, suggesting that varicosities along different axons
are distributed in a fundamentally similar, scaled manner. Varicos-
ity spacing was neither regular nor random but followed a pattern
consistent with random synaptic distributions and the occurrence
of multiple-synapse boutons. A quantitative model reproduced the
salient features of the data and distinguished between two
proposed mechanisms relating axonal morphogenesis and
synaptogenesis.

Arborizing varicose axons in the central nervous system are
complex circuit elements: a single hippocampal CA3 cell

axon makes !50,000 synapses over !0.2 m, all within the
hippocampus (1, 2). Understanding connectivity in specific
circuits requires detailed quantitative information about axonal
synaptic distributions. At the ultrastructural level, synaptic bou-
tons have been characterized as !1-!m long (3–5) varicosities
that usually occur en passant along the axon, separated from
other varicosities by short axonal shaft segments. For CA3-to-
CA1 and other axons, the average synapse!varicosity ratio is
1.1–1.7 (4–11), reflecting the occurrence of multiple-synapse
boutons (MSBs). MSBs may serve as intermediate or final stages
of morphological plasticity associated with long-term synaptic
plasticity (12–17).

The organization of varicosities and their synapses over longer
axonal distances merits quantification for several reasons. First,
varicosity spacing is a key aspect of the complex geometry of
axon–dendrite interactions. Second, synaptic and varicosity dis-
tribution patterns likely reflect fundamental connectivity rules.
The report by Hellwig et al. (18) of a purely random pattern
along neocortical axons carries numerous implications but has
not yet been extended to other axon types. Third, varicosity
spacing patterns may hold clues about mechanisms of synapto-
genesis and development, an unexplored possibility relevant for
synaptic plasticity models invoking varicosity neogenesis (15, 16,
19). Here, we used the strategy of quantifying varicosity spacing
and its variability at the single axonal branch level for diverse
types of central varicose axons, focusing on hippocampal CA3-
to-CA1 axons and cerebellar parallel fibers but also including
hippocampal axons in more heterogeneous populations to en-
able comparisons across a variety of axons.

Materials and Methods
Labeling. Adult male and female Wistar rats were anesthetized
and killed following institutional animal care guidelines. Hip-
pocampal and cerebellar slices (400 !m) were incubated at room
temperature in saline containing: 124 mM NaCl , 2 mM KCl, 2
mM CaCl2, 2 mM MgSO4, 1.25 mM KH2PO4, 26 mM NaHCO3,
and 22 mM glucose, aerated with 95% O2-5% CO2. Slices were
transferred briefly to a submersion chamber for labeling, and DiI
or DiA (Molecular Probes) was applied to axons either by (i)
filling pipette tips with subpicoliter volumes of the oily (FAST)
forms of the dyes, fracturing the tip against the chamber floor,
and depositing the oil-filled shard superficially in the slice; or (ii)
inserting dye-coated pipettes into slices for 3–6 min (20).
Labeled slices were incubated 3–6 h and fixed with 4%
paraformaldehyde.

Axon health was controlled for in similarly prepared slices: (i)
axons generated robust compound action potentials (arrow in
Fig. 1i Inset) and synaptic field potentials (n " 25 slices); (ii)
extracellularly stimulated axons, identified visually by patching
CA3 cells with pipettes filled with Alexa-488 (Molecular
Probes), faithfully conducted trains of action potentials back to
the soma (Fig. 1i; n " 3 cells); and (iii) labeled axons imaged
repeatedly for several hours showed no detectable morpholog-
ical deterioration (n " 3 axons). In addition, we screened all fixed
slices, only analyzing regions whose spiny dendrites and other
structures appeared healthy (Fig. 1h).

Imaging. Fixed samples were rinsed, coverslipped in buffer, and
imaged with a confocal scanning laser microscope equipped with
a #60, 1.2-numerical aperture water immersion objective lens.
Voxels were 155 # 155 # 486 nm. Sections were scanned twice
and averaged. Image stacks comprised up to 100 sections. Most
images were taken at slice depths of 50–100 !m, where tissue and
optical properties were optimally balanced. Axons were analyzed
in three dimensions in stacks by using IGL TRACE (J. C. Fiala and
K. M. Harris; freely available at www.synapses.bu.edu). Axons
were selected on the basis of favorable imaging characteristics,
including high signal-to-noise ratio, labeling over long distances,
and lack of overlapping axons, and without regard to particular
morphological features. A single exception was an axon in CA1
radiatum with noticeably infrequent varicosities; because of the
(intentional) selection bias this axon was excluded from inter-
group comparisons, but included in pooled interval and window
analyses because they would be unaffected by this type of bias.

Image contrast was set to maintain a wide dynamic range; for
most images little or no adjustment was needed. Varicosities

Abbreviations: CV, coefficient of variation; MSB, multiple-synapse bouton; PF, parallel
fiber; LM, lacunosum–moleculare; MF, mossy fibers.
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were identified in two stages by using criteria based on the key
features of varicose axons. First, we identified all focal swellings
that appeared larger and brighter than the adjacent stretches of
bare axon. The aim in this initial stage was to apply a low
selection threshold because ultrastructural studies have shown
that the diameters of smaller varicosities can be only slightly
greater than that of the axon; we did not use a more stringent but
arbitrary threshold such as a twofold focal increase in diameter.
Suspected varicosities were then confirmed as such if they
proved evident in the adjacent out-of-plane images (because of
their relative brightness and the microscope’s point spread
function) and more intense than a standard threshold level of 160
on a 0–255 gray scale. The latter was assessed with a software
tool that also outlined confirmed varicosities with a contour.
Detection of varicosities was accurate and reliable: measure-
ments did not vary with slice depth or axonal distance; observer-

dependent variability in counting varicosities was low (estimated
at !5%); and results agreed closely with previous ultrastructural
measurements (4, 5). Varicosity spacing was measured by cal-
culating the varicosity contour centroids, using these to define
varicosity midpoints in x–y–z coordinates, and obtaining the
intervaricosity intervals as the center-to-center distances be-
tween adjacent midpoints. Correction for out-of-plane axon
trajectories was unnecessary because axons were analyzed in
three dimensions, as was correction for shrinkage because
samples were not dehydrated.

Statistical Analyses. Varicosity positions were analyzed statisti-
cally as linear series of distance events (18, 21). Varicosities were
treated as equal because (i) it is unclear how to translate
varicosity size into synaptic weight, because size correlates
generally but not precisely with the numbers and dimensions of
presynaptic components (e.g., refs. 5–7 and 10) and the average
synapse!varicosity ratio is in any case fairly reliable; and (ii),
most importantly, the spacing of varicosities was independent of
their size: when directly measured along a long axon in CA1, the
lengths of varicosities and their adjacent shafts showed very low
correlation (n " 101, Pearson’s r " 0.08). Varicosity number
variability was measured by window analysis. Along individual
axons, the numbers of varicosities within consecutive, nonover-
lapping windows were counted, providing sets of measurements
whose variance!mean ratio gave the index of dispersion. Indices
were obtained for window lengths ranging from 2 to at least 30
!m (lengths were increased by 20% per step up to one-sixth of
the total length of each particular axon). For each window size,
average indices across all axons were also calculated. Clustering
was further assessed as follows. For each axon, we first deter-
mined the maximal varicosity count, Nmax, in moving windows,
then constructed 1,000 simulated axons with intervals identical
to the originals in value but random in sequence and measured
Nmax along these, and then determined how often the simulated
Nmax was equal to or greater than the original Nmax. This
frequency gave an estimate for the probability, Porig, that Nmax
appeared if the intervals were randomly distributed. The expec-
tation for Porig would, however, depend on the number and
distribution of varicosities, so we repeated the simulation start-
ing with shuffled intervals to obtain the probability, Psim, that
Nmax would occur in the shuffled distributions. Running these
simulations for 56 axons and eight window sizes gave distribu-
tions for Porig and Psim that could be compared by using binomial
statistics.

Modeling. Nascent synaptic sites were placed at randomly se-
lected points along axons. Varicosities with a length of 1.0 !m
were centered over synaptic sites. In the varicosity fusion model,
if two synaptic sites were x !m closer than the varicosity length,
their varicosities simply overlapped, fusing into a two-synapse
varicosity measuring 1.0 # x !m in length. Higher numbers of
too-close synapses were similarly incorporated in multiple-
synapse varicosities (i.e., MSBs). Varicosities’ center positions
were determined; these matched the synaptic positions for
single-synapse varicosities, but differed for MSBs. Another
model, the varicosity fission model, also took as a starting point
axons with randomly distributed synapses, but too-close synapses
were slid apart by increasing their separation to the 1.0 !m
varicosity length (reducing all MSBs to single-synapse varicos-
ities). Both models were used to generate 56 axons, each 500 !m
long, with mean intervals reflecting the original data. Spatial
resolution was 10 nm. Modeled synaptic and varicosity distribu-
tions were statistically characterized by the same methods used
with the experimental data.

Fig. 1. Morphological features of varicose axons in different synaptic re-
gions. (A--G) Collapsed views of axons from a variety of synaptic layers in the
hippocampus and cerebellum. (H) Spiny dendrites from area CA1. (I) Train of
four action potentials, elicited in the axon and antidromically propagated to
and intracellularly recorded at the soma; Inset shows compound action po-
tentials (arrow) followed by synaptic potentials, recorded extracellularly.
Bars " 25 msec, 25 mV; Inset, 2.5 msec, 0.25 mV.
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What	reduces	D in	ischemia?

reperfusion was initiated after 65.1 ! 1.7 min of MCAO (Fig.
5A,B). In animals in which the structure improved with reperfu-
sion (n " 8), the recovered area defined by where the percentage
of blebbed dendrites was not significantly different from the pre-

occlusion control extended #300 !m lat-
eral of the structural border toward the
MCAO stroke core (Fig. 5D). For an exam-
ple of lateral dendrites (toward the MCA
core region) that fail to recover with reper-
fusion, see Figure 5A. The partially recov-
ered area (defined by where the percentage
of blebbed dendrites was significantly dif-
ferent from both occlusion and the preoc-
clusion control) extended from 300 to 600
!m lateral of the structural border (lim-
ited by the size of craniotomy window).
Dendrites toward the lateral aspect of the
craniotomy did not recover as well with
reperfusion (Fig. 5D). For comparison of
different animals, all distance measure-
ments were made from the approximate
border of structural damage during
MCAO (Fig. 5D). Recovery of structure
began gradually after #20 –30 min of
reperfusion and in some cases resulted in
the appearance of dendrites that were
nearly identical with prestroke conditions
(Fig. 5B,C). In all eight animals that were
reperfused and showed recovery, the re-
covered dendritic structure was main-
tained for at least 3 h after the beginning of
the initial ischemic period.

Irreversible structural damage within
the ischemic core
A potential limitation of two-photon mi-
croscopy was that it was difficult to simul-
taneously position both laser Doppler
probes and two-photon imaging windows
over the most lateral aspects of the cortex.
In addition, curvature of the lateral cortex
made it difficult to create a cranial window
that permitted both the medial penumbra
and the lateral ischemic core to be imaged
using two-photon microscopy. Therefore,
we used a histological analysis to establish
whether core regions of the MCAO-
induced stroke (including the more lateral
cortical region and the striatum) would
also recover their dendritic structure dur-
ing confirmed reperfusion. After reperfu-
sion, the ischemic penumbra exhibited re-
covered dendritic structure that we
observed during live imaging. In contrast,
after reperfusion we did not observe intact
structure within core regions by histologi-
cal analysis in all animals (n " 5) that
showed recovery in the penumbra area (by
live imaging) consistent with our previous
histological work (Enright et al., 2007)
(Fig. 6; supplemental Fig. 2, available at
www.jneurosci.org as supplemental mate-
rial). In our previous study in the core re-

gion (produced by irreversible MCAO), we showed that wide-
spread loss of spines occurred in addition to blebbing of dendrites
(Enright et al., 2007). Here, we find that dendrites in these corti-
cal regions that were on average $3.8 ! 0.3 mm lateral from

Figure 5. Two-photon imaging of local changes in blood flow and dendritic structure before, during, and after MCAO. A, Two-photon
projection images of dendritic structure before, during, and after MCAO. Each image was made from a projection derived from five Z
sections. They are oriented with the right side being more lateral, which is further into the MCA territory. The middle panels were taken
during26 – 64minafterMCAO.Thedashedlineintheleftpartshowsthestructuraldamageborder.Asonemovestotheleftawayfromthe
MCAcore,thestructureimproves, indicatingatransitionzoneorborder.TotherighttowardtheMCAcore,degradationofthestructurewas
observed. The dashed line over the vessel indicates an artery segment that was not completely blocked during MCAO (see C) and in which
intact dendrites were observed. B, Close images of dendritic structure within the dashed area in A, indicating intact structure before MCAO.
In the middle panel, a projection image is shown 52 min after MCAO and extensive dendritic blebbing is observed. A small white arrow
shows a region in which dendrites were relatively spared, possibly because of residual blood flow in the vessel indicated below in C (laser
speckle images). In the right panel, the animal was reperfused and a significant recovery of dendritic structure was observed. C, Laser
speckle image displayed as speckle contrast before and 15 min after MCAO. During MCAO, a large reduction in blood flow is indicated by
lighter gray level tones. An artery segment partially blocked during MCAO is indicated by white and black arrows in pre-MCAO and MCAO
panels, respectively. The same vessel is indicated in A (during MCAO) in dendrite images by a white dashed line. D, Quantification of
dendriticblebbing(mean!SEM)ineightanimalsbefore(pre),duringMCAOstroke(str),andafterreperfusion(reper).Datashownreflect
the percentage of blebbed dendrites found at these various times at different distances from the apparent border of dendritic damage. The
percentages of dendritic blebbing are significant different between prestroke control and during MCAO, during MCAO, and after reperfusion
at all distances ( p % 0.05, by two-way ANOVA). Between prestroke control and after reperfusion, it is significantly different at 450 and
$600 !m from the structural border, but not at other distances. It indicates that the recovery within 300 !m lateral to the dendritic
damage border was almost complete.
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dom bonds. These two situations are representatives of
the equivalence class

�
1, 1

2

�
of random bond and random

jump models[15, 16]. Other representatives include seg-
ments with di�erent local di�usion coe�cient, which can
be thought of as a varying density of microscopic barriers.

Another class of ordering,
�
1, 1

�
, is represented by the

periodic, or, more generally, hyperuniform [10] systems,
for which the variance (�N)2 ⇠ 1 is not extensive. An ex-
ample is a crystal lattice with independently fluctuating
positions around equilibrium periodic sites. Technically,
the density correlator is a sequence of infinitely narrow
Bragg peaks, with �(q)|q�0 = 0.

More exotic ordering types emerge when the variance
(�N)2 ⇠ L3�µ, 1 < µ < 2, grows faster than L, corre-
sponding to � = µ�1

2 . This situation can be realized by
independently added segments drawn from a Lévy distri-
bution p(a) ⇠ 1/a1+µ, in which case the density correla-
tor diverges as �(q) ⇠ |q|µ�2. Again, instead of allowing
segments with diverging variance �2 = 1, one could vary
the permeabilities on a regular lattice in such a way that
a number of elementary barriers placed at each site has
an infinite variance.

We show that the di�usion coe�cient D(t) and the kur-
tosis K(t) are very sensitive to how spatially correlated
the barriers are. This correlation is quantified in terms
of the fluctuation of the number N(t) of the barriers
falling within the di�usion length L(t) in agreement with
Eq. (1). We relate this scaling to the probability density
function (PDF) p(a) of the intervals am = xm+1 � xm

between successive positions xm of the barriers; this rela-
tion is valid whenever a sample is made of random build-
ing blocks (e.g. cells). Depending on the variance �2 of
p(a), we classify the disorder in their positions as falling
into the three types (Fig. 2): (a) order, � ! 0, corre-
sponding to perfect correlations (applicable to any peri-
odic arrangement of barriers, with one or more barriers

per unit cell); (b) strong disorder, � ! 1, correspond-
ing to the “fat tail” in p(a) ⇠ a�(1+µ), 1 < µ < 2,
when the barriers come in bunches separated by wide
gaps; (c) most common case of a moderate disorder char-
acterized by finite �. These ordering types can be distin-
guished by the exponent � of the power-law decrease of
the relative fluctuation �N/ �N� ⇠ L��(t) in the number
of barriers falling within the di�usion length, leading to
(D(t) � D1)/D1 ⇠ t��.

is fully defined by the mean ā =
�

ap(a) da and per-
meability �, and is insensitive to the spatial arrangement
of the barriers, we find that the way it is approached
at large time t � ā2/D1 is sensitive to the disorder,
with the type (b) yielding the slowest decrease, � = µ�1

2 ,
0 < � < 1

2 ; type (a) the fastest one, � = 1; and the
type (c) corresponding to � = 1

2 with the exact prefactor
scaling as �2,

D(t) = D1

�
1 + �

�
�

1 + �

�3
2

�
2

⇡

⌧r

t

�
, � =

�2

ā2
(3)

where ⌧r = V/(S�) = ā/(2�) is the residence time in a
typical interval (“pore”).

Remarkably, the finite-variance limit (3) is uniquely
determined by the mean and the variance of p(a), and
is independent of any other features of this PDF. This
rare case of a relative universality of di�usion properties
may be utilized as a practical way to quantify the degree
of ordering of the restrictions in quasi-one-dimensional
samples, by combining the short-time limit of D(t) yield-
ing D0 and S/V = 2/ā [5], with the long-time limit,
Eqs. (2) and (3), yielding the membrane permeability
and the variance in the inter-membrane intervals.
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FIG. 1: Time-dependent diffusion distinguishes between structural
complexity classes in one dimension, represented by the placement
of identical permeable barriers with the same mean density. a,
Short-range disorder (blue), hyperuniform disorder (green), and or-
der (red). b, The barrier densities have qualitatively different large-
scale fluctuations, reflected in the small-k behavior of their density
correlator �(k) ⇠ k

p, with p = 0, 2 and1 (see text). c, Numerical
results confirming the relation (3). The time-dependence (2) clearly
distinguishes between the three arrangements, whereas the valueD1
is the same for all of them. The dashed lines are the exact power laws
from equation (4), and the exponential decrease is from the exact so-
lution (see text and the Supplementary information); ⌧

r

= ā/2.

corresponding to p = 1, Dinst(t) � D1 decreases exponen-
tially (faster than any power law), corresponding to � = 1.
We now outline the main disorder classes in d dimensions.
The short-range disorder is characterized by the finite corre-

lation length lc, beyond which the disorder correlator �(r) !
0, and the limit of �|k�0 is finite, corresponding to p = 0.
In this case, the variance �(�D)2�|L � (lc/L)d in equation
(5) in the Methods section decreases in the same way as the
relative fluctuation of the structural heterogeneity according
to the central limit theorem, as long as the diffusion length
L(t) � lc. This simple picture ofDinst(t) relying on typical,
rather than optimal, structural fluctuations (as long as D1 is
finite) yields � = d/2 in d dimensions27,28. The examples are
the first case in Fig. 1, or a medium made of randomly placed
domains of two diffusivity values.
When the structure is more homogeneous (e.g. periodic
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correspond to the histological slice in b, ref. 31, of skeletal muscle
across the fibers. Note the tight cell packing achieved by straight cell
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in d = 3. e, Structure correlator �(k) ⇠ k
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and angular averaged, arb. units) for a (magenta), c (grey), and d
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or hyperuniform29), the structural correlations are suppressed,
� ⇠ kp with p > 0, hence the variance �(�D)2�|L narrows
down faster than L�d with increasing L, yielding � > d/2 in
d dimensions (see Fig. 1). In the “extreme” case of a strictly
periodic system in any d, coarse-graining beyond the micro-
scopic scale of a largest lattice vector does not contribute
to the structural fluctuations, �(k) ⌘ 0 (p = 1). In this
case,D(t) decays andDinst(t) reachesD1 exponentially fast
(� = 1) already at the microscopic scale, with the decay rate
determined by the details of the lattice. The hyperuniform
media, corresponding to � ⇠ kp with 0 < p < 1, such as
a perturbed lattice (p = 2) or a maximally random jammed
state29 with p � 1, fall in-between the short-range and the
periodic cases. For them, equations (1) and (2) are the power
laws with d/2 < � < 1.
Conversely, stronger structural fluctuations lead to � < d/2
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FIG. 1. Time-dependent diffusion distinguishes between structural
complexity classes in one dimension, represented by the placement
of identical permeable barriers with the same mean density. (A)
Order (red), hyperuniform disorder (green), short-range disorder
(blue), and strong disorder (magenta). (B) The barrier densities have
qualitatively different large-scale fluctuations, reflected in the small-
k behavior of their density correlator �(k) ⇠ k

p (see text). (C)
Numerical results confirming the relation (3). The time-dependence
(2) clearly distinguishes between the four arrangements, while the
value D1 is the same for all of them. The dashed lines are the exact
power laws from equation (9), and the exponential decrease is from
the exact solution (see text and Supplementary material); ⌧
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equation (3). Finally, strong disorder, with structural fluctua-
tions growing faster with volume than prescribed by the cen-
tral limit theorem, is reflected in a diverging �|k�0, i.e. the
exponent p < 0, and � < d/2 (weak self-averaging). Here,
we used the Lévy (fat tail) distribution P (a) ⇠ 1/a1+µ with
µ = 7/4 for the successive barrier intervals, such that the vari-
ance �(a � ā)2�P diverges. This yields p = µ � 2 = �1/4
and � = (µ � 1)/2 = 3/8 in agreement with equation (3).

Higher dimensions d > 1 provide more ways to realize
the same basic disorder classes. Various periodic arrange-
ments would yield the same qualitative behavior, p = 1 and
� = 1. Hyperuniform disorder can be realized for different
p > 0. While p = 2 when the restrictions are independently
displaced away from the lattice sites, p � 1 for a maximally
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random jammed state11. Equation (3) provides the possibility
to observe the jamming transition, from p = 0 to p = 1, via
diffusion in-between packed impermeable beads.

Remarkably, higher dimensions open up ways to realize
strong structural fluctuations, with diverging �(k), corre-
sponding to p < 0 and � < d/2, without a need to invoke a
Lévy distribution. A negative p (Fig. 2) can be achieved very
naturally, by organizing microstructure in terms of randomly
placed and oriented regular components (e.g. infinite lines,
planes) with dimensionality ds < d, in which case p = �ds (a
negative integer), and 2� corresponding to their co-dimension.
The first such example14 is the extended disorder realized by
random permeable hyperplanes, ds = d� 1, Fig. 2a, resulting
in � = 1/2 in any d. Likewise, randomly placed and oriented
rods, ds = d � 2, embedded in d = 3 dimensions (Fig. 2c)
would realize p = �1 and � = 1 < 3/2. The above ex-
amples merely represent each disorder class; e.g. the “rods”
from Fig. 2c can be structurally complex, permeable or imper-
meable. What matters is the long-range correlations. Clearly,
for components with finite extent, the disorder becomes short-
ranged, � ! d/2, when the rms molecular displacement ex-
ceeds their size.

Above, we assumed that the molecules (the random walk-
ers) can spread everywhere. When impermeable boundaries
split the space into disconnected parts, equation (3) applies
separately to the contribution from each part, which then add
up. The most relevant disorder contribution is the one with the
smallest �, yielding the slowest power law tails (1) and (2).

As a result, measuring the exponent � with any time-
dependent diffusion technique allows one to determine the
disorder universality class via the exponent p using the rela-
tion (3). Let us now apply this framework to diffusion mea-
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complexity classes in one dimension, represented by the placement
of identical permeable barriers with the same mean density. (A)
Order (red), hyperuniform disorder (green), short-range disorder
(blue), and strong disorder (magenta). (B) The barrier densities have
qualitatively different large-scale fluctuations, reflected in the small-
k behavior of their density correlator �(k) ⇠ k

p (see text). (C)
Numerical results confirming the relation (3). The time-dependence
(2) clearly distinguishes between the four arrangements, while the
value D1 is the same for all of them. The dashed lines are the exact
power laws from equation (9), and the exponential decrease is from
the exact solution (see text and Supplementary material); ⌧

r

= ā/2.

equation (3). Finally, strong disorder, with structural fluctua-
tions growing faster with volume than prescribed by the cen-
tral limit theorem, is reflected in a diverging �|k�0, i.e. the
exponent p < 0, and � < d/2 (weak self-averaging). Here,
we used the Lévy (fat tail) distribution P (a) ⇠ 1/a1+µ with
µ = 7/4 for the successive barrier intervals, such that the vari-
ance �(a � ā)2�P diverges. This yields p = µ � 2 = �1/4
and � = (µ � 1)/2 = 3/8 in agreement with equation (3).

Higher dimensions d > 1 provide more ways to realize
the same basic disorder classes. Various periodic arrange-
ments would yield the same qualitative behavior, p = 1 and
� = 1. Hyperuniform disorder can be realized for different
p > 0. While p = 2 when the restrictions are independently
displaced away from the lattice sites, p � 1 for a maximally
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random jammed state11. Equation (3) provides the possibility
to observe the jamming transition, from p = 0 to p = 1, via
diffusion in-between packed impermeable beads.

Remarkably, higher dimensions open up ways to realize
strong structural fluctuations, with diverging �(k), corre-
sponding to p < 0 and � < d/2, without a need to invoke a
Lévy distribution. A negative p (Fig. 2) can be achieved very
naturally, by organizing microstructure in terms of randomly
placed and oriented regular components (e.g. infinite lines,
planes) with dimensionality ds < d, in which case p = �ds (a
negative integer), and 2� corresponding to their co-dimension.
The first such example14 is the extended disorder realized by
random permeable hyperplanes, ds = d� 1, Fig. 2a, resulting
in � = 1/2 in any d. Likewise, randomly placed and oriented
rods, ds = d � 2, embedded in d = 3 dimensions (Fig. 2c)
would realize p = �1 and � = 1 < 3/2. The above ex-
amples merely represent each disorder class; e.g. the “rods”
from Fig. 2c can be structurally complex, permeable or imper-
meable. What matters is the long-range correlations. Clearly,
for components with finite extent, the disorder becomes short-
ranged, � ! d/2, when the rms molecular displacement ex-
ceeds their size.

Above, we assumed that the molecules (the random walk-
ers) can spread everywhere. When impermeable boundaries
split the space into disconnected parts, equation (3) applies
separately to the contribution from each part, which then add
up. The most relevant disorder contribution is the one with the
smallest �, yielding the slowest power law tails (1) and (2).

As a result, measuring the exponent � with any time-
dependent diffusion technique allows one to determine the
disorder universality class via the exponent p using the rela-
tion (3). Let us now apply this framework to diffusion mea-
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FIG. 1: Time-dependent diffusion distinguishes between structural
complexity classes in one dimension, represented by the placement
of identical permeable barriers with the same mean density. a,
Short-range disorder (blue), hyperuniform disorder (green), and or-
der (red). b, The barrier densities have qualitatively different large-
scale fluctuations, reflected in the small-k behavior of their density
correlator �(k) ⇠ k

p, with p = 0, 2 and1 (see text). c, Numerical
results confirming the relation (3). The time-dependence (2) clearly
distinguishes between the three arrangements, whereas the valueD1
is the same for all of them. The dashed lines are the exact power laws
from equation (4), and the exponential decrease is from the exact so-
lution (see text and the Supplementary information); ⌧

r

= ā/2.

corresponding to p = 1, Dinst(t) � D1 decreases exponen-
tially (faster than any power law), corresponding to � = 1.
We now outline the main disorder classes in d dimensions.
The short-range disorder is characterized by the finite corre-

lation length lc, beyond which the disorder correlator �(r) !
0, and the limit of �|k�0 is finite, corresponding to p = 0.
In this case, the variance �(�D)2�|L � (lc/L)d in equation
(5) in the Methods section decreases in the same way as the
relative fluctuation of the structural heterogeneity according
to the central limit theorem, as long as the diffusion length
L(t) � lc. This simple picture ofDinst(t) relying on typical,
rather than optimal, structural fluctuations (as long as D1 is
finite) yields � = d/2 in d dimensions27,28. The examples are
the first case in Fig. 1, or a medium made of randomly placed
domains of two diffusivity values.
When the structure is more homogeneous (e.g. periodic
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or hyperuniform29), the structural correlations are suppressed,
� ⇠ kp with p > 0, hence the variance �(�D)2�|L narrows
down faster than L�d with increasing L, yielding � > d/2 in
d dimensions (see Fig. 1). In the “extreme” case of a strictly
periodic system in any d, coarse-graining beyond the micro-
scopic scale of a largest lattice vector does not contribute
to the structural fluctuations, �(k) ⌘ 0 (p = 1). In this
case,D(t) decays andDinst(t) reachesD1 exponentially fast
(� = 1) already at the microscopic scale, with the decay rate
determined by the details of the lattice. The hyperuniform
media, corresponding to � ⇠ kp with 0 < p < 1, such as
a perturbed lattice (p = 2) or a maximally random jammed
state29 with p � 1, fall in-between the short-range and the
periodic cases. For them, equations (1) and (2) are the power
laws with d/2 < � < 1.
Conversely, stronger structural fluctuations lead to � < d/2
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shown in Fig. 2a for d = 2. The short-range disorder in D(r)
yields (13, 14) the exponent # = d/2 in agreement with equation
[1]. All ordered (periodic) arrangements of permeable or imperme-
able restrictions to diffusion in any d (e.g. Fig. 2b) are characterized
by the vanishing �(k) for sufficiently small k, formally correspond-
ing to p = 1, and yielding an exponentially fast decay of the mem-
ory in diffusion, # = 1. (Paraphrasing (15), ordered structures are
all alike; every disorder class is disordered in its own way.) The hy-
peruniform disorder can be realized for different p > 0. While p = 2

when the restrictions are independently displaced away from the lat-
tice sites in any d, p ' 1 for a maximally random jammed state in
d = 3, ref. (12). Hence, equation [1] provides a possibility to ob-
serve the jamming transition, from p = 0 at low packing density, to
p ' 1, via measuring diffusion in-between packed hard spheres.

The extended disorder classes, Fig. 2c,d, are inherent to d > 1.
They open up a natural way to realize strong disorder, with diverging
�(k), Fig. 2e, corresponding to p < 0 and # < d/2, without a need
to invoke a L«evy distribution (as it had to be done in Fig. 1). A neg-
ative p can be achieved by organizing structure in terms of randomly
placed and oriented regular components (e.g. infinite lines, planes)
with dimensionality d

s

< d, in which case p = �d

s

(a negative in-
teger), the structural correlator �(r) ⇠ 1/r

d�ds decays slower than
1/r

d, and 2# corresponding to their co-dimension d � d

s

. The first
such example (16) is the extended disorder realized by random per-
meable hyperplanes, d

s

= d � 1, Fig. 2c, resulting in # = 1/2 in
any d. Likewise, randomly placed and oriented rods, d

s

= d � 2,
embedded in d = 3 dimensions (Fig. 2d) would realize p = �1 and
# = 1 < 3/2. For the structural components with finite extent l

c

,
the disorder becomes short-ranged, p ! 0 and # ! d/2, when the
diffusion length exceeds their size (the correlation length l

c

).
Of course, from a long-time measurement it is impossible to de-

duce how exactly a given structural universality class is realized at
short distances. Instead of thin barriers in Fig. 1, we could have
chosen finite intervals with different diffusion coefficient, or smooth
variations of local diffusion coefficient D(x), realizing the same low-
k behavior of �(k). Likewise, the lines, planes or rods from Fig. 2c,d
could be structurally complex at short distances. The information de-
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diffusion tensor components for calf tongue genioglossus (TG, blue circles) and
heart (H, red diamonds). Solid lines are the fit of �?(t) to SI equation [ 39 ] with
d = 2. For fit results see SI Table 1. b, Data for �?(t) replotted as function of
t�1/2 consistent with # = 1/2. Equation [ 1 ] yields p = �1; hence, d

s

= 1
(see text and Fig. 2). c, Muscle slice across the fibers. d, �(k) calculated from
image intensity in c. Tight cell packing achieved by straight cell walls in c results
in exponent p = �1 of the extended disorder class of Fig. 2c, yielding # = 1/2.

duced about the global organization should practically complement
our knowledge about the mesoscopic structure and the dimensional-
ity d, as described in the subsequent in vivo examples.

Above, we assumed that the molecules (the random walkers) can
spread everywhere. When impermeable boundaries split the space
into disconnected parts, equation [1] applies separately to the contri-
bution from each part, which then add up. The most relevant disorder
contribution is the one with the smallest #, yielding the slowest power
law tails [2] and [3].

Extended disorder provided by muscle fiber walls
In Fig. 3, we analyze the time-dependence of diffusion tensor eigen-
values in the fresh ex vivo muscle tissue samples measured by Kim
et al. (17). The nondispersive eigenvalues �

1

correspond to the unre-
stricted diffusion along the fibers. The transverse components �?(t)

in the two-dimensional fiber cross-section, Fig. 3c, are strongly dis-
persive. Representing the data as function of t

�1/2, we observe the
asymptotic tail [3]. Indeed, the fit of �?(t) to equation [5] yields
# ⇡ 0.5 for both tongue and heart (SI Fig. 7), exemplifying weak
self-averaging, # < d/2, in contrast to # = 1 expected for the d = 2

short-range disorder. We thus conclude that the restrictions to water
diffusion are strongly spatially correlated on the scale of the diffusion
length (up to ⇠ 30 µm in this measurement), which puts them into
the extended disorder class of Fig. 2c with d

s

= 1 in d = 2.
In SI, we argue that the relevant restrictions are in fact mus-

cle cell membranes (sarcolemma), and quantify their permeability
and cell size (SI Table 1). The good agreement between the fit pa-
rameters and histological values can be rationalized by comparing a
typical histological slice transverse to muscle fibers (Fig. 3c) with
the random barriers in two dimensions (Fig. 2c). Tight packing of
muscle cells makes the fiber walls fairly flat and spatially correlated
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Randomly	oriented	cylinders	in	GM:
Kroenke	2004;	Jespersen	2007,	2010

d = 1,  p = 0:	è ϑ = ½
randomly	oriented	1-
dimensional	neurites
with	short-range	disorder	in	D(x)
inside

Extra-neurite water:
d = 3,  p = −1  è ϑ = 1

|!|+ !1/2 ⇠ !1/2

outside inside
• Disorder	universality	class	unchanged	
è no	qualitative	change

• Disorder	amplitude	increases	(e.g.	beading,	cf.	Budde et	al. 2010)
è D∞ drops,	coefficient	of	ω1/2 increases

reperfusion was initiated after 65.1 ! 1.7 min of MCAO (Fig.
5A,B). In animals in which the structure improved with reperfu-
sion (n " 8), the recovered area defined by where the percentage
of blebbed dendrites was not significantly different from the pre-

occlusion control extended #300 !m lat-
eral of the structural border toward the
MCAO stroke core (Fig. 5D). For an exam-
ple of lateral dendrites (toward the MCA
core region) that fail to recover with reper-
fusion, see Figure 5A. The partially recov-
ered area (defined by where the percentage
of blebbed dendrites was significantly dif-
ferent from both occlusion and the preoc-
clusion control) extended from 300 to 600
!m lateral of the structural border (lim-
ited by the size of craniotomy window).
Dendrites toward the lateral aspect of the
craniotomy did not recover as well with
reperfusion (Fig. 5D). For comparison of
different animals, all distance measure-
ments were made from the approximate
border of structural damage during
MCAO (Fig. 5D). Recovery of structure
began gradually after #20 –30 min of
reperfusion and in some cases resulted in
the appearance of dendrites that were
nearly identical with prestroke conditions
(Fig. 5B,C). In all eight animals that were
reperfused and showed recovery, the re-
covered dendritic structure was main-
tained for at least 3 h after the beginning of
the initial ischemic period.

Irreversible structural damage within
the ischemic core
A potential limitation of two-photon mi-
croscopy was that it was difficult to simul-
taneously position both laser Doppler
probes and two-photon imaging windows
over the most lateral aspects of the cortex.
In addition, curvature of the lateral cortex
made it difficult to create a cranial window
that permitted both the medial penumbra
and the lateral ischemic core to be imaged
using two-photon microscopy. Therefore,
we used a histological analysis to establish
whether core regions of the MCAO-
induced stroke (including the more lateral
cortical region and the striatum) would
also recover their dendritic structure dur-
ing confirmed reperfusion. After reperfu-
sion, the ischemic penumbra exhibited re-
covered dendritic structure that we
observed during live imaging. In contrast,
after reperfusion we did not observe intact
structure within core regions by histologi-
cal analysis in all animals (n " 5) that
showed recovery in the penumbra area (by
live imaging) consistent with our previous
histological work (Enright et al., 2007)
(Fig. 6; supplemental Fig. 2, available at
www.jneurosci.org as supplemental mate-
rial). In our previous study in the core re-

gion (produced by irreversible MCAO), we showed that wide-
spread loss of spines occurred in addition to blebbing of dendrites
(Enright et al., 2007). Here, we find that dendrites in these corti-
cal regions that were on average $3.8 ! 0.3 mm lateral from

Figure 5. Two-photon imaging of local changes in blood flow and dendritic structure before, during, and after MCAO. A, Two-photon
projection images of dendritic structure before, during, and after MCAO. Each image was made from a projection derived from five Z
sections. They are oriented with the right side being more lateral, which is further into the MCA territory. The middle panels were taken
during26 – 64minafterMCAO.Thedashedlineintheleftpartshowsthestructuraldamageborder.Asonemovestotheleftawayfromthe
MCAcore,thestructureimproves, indicatingatransitionzoneorborder.TotherighttowardtheMCAcore,degradationofthestructurewas
observed. The dashed line over the vessel indicates an artery segment that was not completely blocked during MCAO (see C) and in which
intact dendrites were observed. B, Close images of dendritic structure within the dashed area in A, indicating intact structure before MCAO.
In the middle panel, a projection image is shown 52 min after MCAO and extensive dendritic blebbing is observed. A small white arrow
shows a region in which dendrites were relatively spared, possibly because of residual blood flow in the vessel indicated below in C (laser
speckle images). In the right panel, the animal was reperfused and a significant recovery of dendritic structure was observed. C, Laser
speckle image displayed as speckle contrast before and 15 min after MCAO. During MCAO, a large reduction in blood flow is indicated by
lighter gray level tones. An artery segment partially blocked during MCAO is indicated by white and black arrows in pre-MCAO and MCAO
panels, respectively. The same vessel is indicated in A (during MCAO) in dendrite images by a white dashed line. D, Quantification of
dendriticblebbing(mean!SEM)ineightanimalsbefore(pre),duringMCAOstroke(str),andafterreperfusion(reper).Datashownreflect
the percentage of blebbed dendrites found at these various times at different distances from the apparent border of dendritic damage. The
percentages of dendritic blebbing are significant different between prestroke control and during MCAO, during MCAO, and after reperfusion
at all distances ( p % 0.05, by two-way ANOVA). Between prestroke control and after reperfusion, it is significantly different at 450 and
$600 !m from the structural border, but not at other distances. It indicates that the recovery within 300 !m lateral to the dendritic
damage border was almost complete.

Li and Murphy • Recovery of Dendrites after Prolonged Stroke J. Neurosci., November 12, 2008 • 28(46):11970 –11979 • 11975
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d = 1

were identified in two stages by using criteria based on the key
features of varicose axons. First, we identified all focal swellings
that appeared larger and brighter than the adjacent stretches of
bare axon. The aim in this initial stage was to apply a low
selection threshold because ultrastructural studies have shown
that the diameters of smaller varicosities can be only slightly
greater than that of the axon; we did not use a more stringent but
arbitrary threshold such as a twofold focal increase in diameter.
Suspected varicosities were then confirmed as such if they
proved evident in the adjacent out-of-plane images (because of
their relative brightness and the microscope’s point spread
function) and more intense than a standard threshold level of 160
on a 0–255 gray scale. The latter was assessed with a software
tool that also outlined confirmed varicosities with a contour.
Detection of varicosities was accurate and reliable: measure-
ments did not vary with slice depth or axonal distance; observer-

dependent variability in counting varicosities was low (estimated
at !5%); and results agreed closely with previous ultrastructural
measurements (4, 5). Varicosity spacing was measured by cal-
culating the varicosity contour centroids, using these to define
varicosity midpoints in x–y–z coordinates, and obtaining the
intervaricosity intervals as the center-to-center distances be-
tween adjacent midpoints. Correction for out-of-plane axon
trajectories was unnecessary because axons were analyzed in
three dimensions, as was correction for shrinkage because
samples were not dehydrated.

Statistical Analyses. Varicosity positions were analyzed statisti-
cally as linear series of distance events (18, 21). Varicosities were
treated as equal because (i) it is unclear how to translate
varicosity size into synaptic weight, because size correlates
generally but not precisely with the numbers and dimensions of
presynaptic components (e.g., refs. 5–7 and 10) and the average
synapse!varicosity ratio is in any case fairly reliable; and (ii),
most importantly, the spacing of varicosities was independent of
their size: when directly measured along a long axon in CA1, the
lengths of varicosities and their adjacent shafts showed very low
correlation (n " 101, Pearson’s r " 0.08). Varicosity number
variability was measured by window analysis. Along individual
axons, the numbers of varicosities within consecutive, nonover-
lapping windows were counted, providing sets of measurements
whose variance!mean ratio gave the index of dispersion. Indices
were obtained for window lengths ranging from 2 to at least 30
!m (lengths were increased by 20% per step up to one-sixth of
the total length of each particular axon). For each window size,
average indices across all axons were also calculated. Clustering
was further assessed as follows. For each axon, we first deter-
mined the maximal varicosity count, Nmax, in moving windows,
then constructed 1,000 simulated axons with intervals identical
to the originals in value but random in sequence and measured
Nmax along these, and then determined how often the simulated
Nmax was equal to or greater than the original Nmax. This
frequency gave an estimate for the probability, Porig, that Nmax
appeared if the intervals were randomly distributed. The expec-
tation for Porig would, however, depend on the number and
distribution of varicosities, so we repeated the simulation start-
ing with shuffled intervals to obtain the probability, Psim, that
Nmax would occur in the shuffled distributions. Running these
simulations for 56 axons and eight window sizes gave distribu-
tions for Porig and Psim that could be compared by using binomial
statistics.

Modeling. Nascent synaptic sites were placed at randomly se-
lected points along axons. Varicosities with a length of 1.0 !m
were centered over synaptic sites. In the varicosity fusion model,
if two synaptic sites were x !m closer than the varicosity length,
their varicosities simply overlapped, fusing into a two-synapse
varicosity measuring 1.0 # x !m in length. Higher numbers of
too-close synapses were similarly incorporated in multiple-
synapse varicosities (i.e., MSBs). Varicosities’ center positions
were determined; these matched the synaptic positions for
single-synapse varicosities, but differed for MSBs. Another
model, the varicosity fission model, also took as a starting point
axons with randomly distributed synapses, but too-close synapses
were slid apart by increasing their separation to the 1.0 !m
varicosity length (reducing all MSBs to single-synapse varicos-
ities). Both models were used to generate 56 axons, each 500 !m
long, with mean intervals reflecting the original data. Spatial
resolution was 10 nm. Modeled synaptic and varicosity distribu-
tions were statistically characterized by the same methods used
with the experimental data.

Fig. 1. Morphological features of varicose axons in different synaptic re-
gions. (A--G) Collapsed views of axons from a variety of synaptic layers in the
hippocampus and cerebellum. (H) Spiny dendrites from area CA1. (I) Train of
four action potentials, elicited in the axon and antidromically propagated to
and intracellularly recorded at the soma; Inset shows compound action po-
tentials (arrow) followed by synaptic potentials, recorded extracellularly.
Bars " 25 msec, 25 mV; Inset, 2.5 msec, 0.25 mV.
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were centered over synaptic sites. In the varicosity fusion model,
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DðtÞ≡ hvðtÞvð0Þi∼ t−ð1+ϑÞ;   ϑ> 0: [2]

Practically, the power law tail 2 can be identified in the way the
time-dependent instantaneous diffusion coefficient

DinstðtÞ≡
∂
∂t

!
δx2

"

2
=
Z t

0

dt′ Dðt′Þ ’ D∞ + const · t−ϑ [3]

approaches the finite bulk diffusion constant D∞. The quantity
DinstðtÞ is accessible with techniques (3, 4) measuring the mean-
square molecular displacement hδx2ðtÞi in a particular direction
(Eqs. 4–6).
The relation 1 provides a way to determine the exponent p

and, thereby, the structural universality class, using bulk diffusion
measurement. Local properties may affect the coefficients, e.g.,

the values of D∞ and of the prefactor of t−ϑ in [3], but not the
exponent ϑ. The latter is robust with respect to variations
between samples of a similar origin, such as due to biological
variability. This picture is akin to critical phenomena (10), where
the phase transition temperature is nonuniversal (sensitive to
short-scale details), while the critical exponents distinguish, based
on global symmetries, between the universality classes of long-
range fluctuations.

Examples of Structural Universality Classes
Fig. 1 illustrates how diffusion distinguishes between the uni-
versality classes via the relation 1 in the d= 1 dimension. The
Monte Carlo (MC)-simulated diffusion is hindered by the
permeable barriers with mean density n= 1=a and permeability
κ (Materials and Methods). The universality classes, realized
here by the different ways of arranging the same 40,000 bar-
riers (sample cutouts shown in Fig. 1A), exhibit distinct structural
exponents p in the barrier density correlator (Fig. 1B), which result
in the distinct exponents 1 (Fig. 1C).

Order.Any periodic arrangement (such as Fig. 1, red) is reflected
in the Bragg peaks in ΓðkÞ, with Γ≡ 0 for k below the minimal
reciprocal lattice vector, formally corresponding to p=∞. As the
coarse-graining beyond the lattice constant does not increase
the structural fluctuations, DðtÞ decays and DinstðtÞ reaches D∞
exponentially fast, formally corresponding to ϑ=∞ (i.e., faster
than any inverse power law); see also SI Text, Section IIE.
Structural disorder comes in qualitatively different ways.

Short-Range Disorder. Short-range disorder is arguably the most
common disorder class, and it serves as a good reference point. It
is characterized by a finite correlation length lc, beyond which
the correlator ΓðrÞ decreases sufficiently fast, which corresponds
to the finite plateau in ΓðkÞjk→ 0 = const> 0, and the structural
exponent p= 0, similar to the Poissonian disorder (uncorrelated
restrictions). Finite correlation length means that, at larger dis-
tances, the variance of the number of restrictions scales in pro-
portion to their mean number in a given volume, consistent with
the central limit theorem. In Fig. 1 (blue), we chose each suc-
cessive interval am between barriers independently from the
distribution PðaÞ with mean a= 1=n and finite variance σ2. This
results in the finite plateau Γjk→ 0 = σ2=a3, as calculated in

A

B

C

Fig. 1. Time-dependent diffusion distinguishes between structural univer-
sality classes in one dimension, represented here by the placement of iden-
tical permeable barriers with the same mean density. (A) Order (red),
hyperuniform disorder (green), short-range disorder (blue), and strong dis-
order (magenta) are shown. (B) The barrier densities have qualitatively dif-
ferent large-scale fluctuations, reflected in the small-k behavior of their
density correlator ΓðkÞ∼ kp (see Examples of Structural Universality Classes).
(C) Numerical results confirming the relation 1. The time-dependence 3
clearly distinguishes between the four arrangements, while the value D∞ is
the same for all of them. The dashed lines are the exact power laws from
Eqs. S14, S19, and S23, and the exponential decrease is from the exact so-
lution, Eq. S25. Strong disorder occurs for 1< μ< 2; here μ= 7=4.

A B

C

D

E

Fig. 2. Structural universality classes in dimension d > 1. (A and B) The
examples of analogs of the d = 1 classes, corresponding to Fig. 1 (blue and
red). (C–E) The extended universality classes inherent to d > 1. (C) Random
membranes, with representatives shown for d = 2 and d = 3, result in ϑ = 1/2
for any d. (D) Random rods, with a representative shown for d = 3, result in
ϑ = 1 for any d. (E) Structure correlator Γ(k) ∼ kp (numerically calculated and
angular averaged, arbitrary units) for C (magenta in d = 2 and green in d = 3),
and for D (gray), exhibits the negative structural exponent p = –ds.

Novikov et al. PNAS | April 8, 2014 | vol. 111 | no. 14 | 5089

A
PP

LI
ED

PH
YS

IC
A
L

SC
IE
N
CE

S
BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

Fieremans,	Novikov,	et	al.	NeuroImage 2016

Short-range	disorder p = 0

ϑ = (0+1)/2



Human	Skeletal	Muscle
(calf,	shoulder)



0DRadial

t=57ms t=1200ms

2

0

2.5DLongitudinal

t=57ms t=1200ms

Time	Dependent	Diffusion:	Human	Calf	Muscle

Human	calf	muscle,	3T	Siemens



RPBM = Random permeable 
barrier model

3 Parameters:

D0 (w/o membranes)
S/V surface-to-volume 

(to obtain size)
κ membrane permeability 

Scattering theory + 

real-space RG:

D(t) for all t
# =

1

2

�(k) ⇠ k�1 , k ! 0



Longitudinal	Follow	up	31	y/o	M
(Posterior	Tibialis Tendon	Tear)



Post-operative	outcomes	in	rotator	cuff	muscle

• Setting	of	rotator	cuff	tendon
• Gold	standard:	muscular	atrophy	
• Outcomes	diminish	as	rotator	cuff	

atrophy	and	fatty	infiltration	
worsen

• Current	methods	(CT,	MRI)	
quantify	shoulder	atrophy	
indirectly as	a	function	of	fatty	
infiltration

• We	focus	on	atrophy	directly,	via	
myofiber	diameter	using	D(t)



Lemberskiy et al. Investigative Radiology 2017

D(t)	in	prostate	cancer
Benign Low Grade (3+3)

Intermediate	Grade	(3+4) High Grade (4+3)



Generalizations: 

R2*(t) ~ meso magnetic structure

Time-dependent transverse relaxation reveals statistics of structural organization in microbead samples 
Alexander Ruh1, Philipp Emerich1, Harald Scherer2, Dmitry S. Novikov3, and Valerij G. Kiselev1 

1Dept. of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany, 2Dept. of Inorganic and Analytical Chemistry, University Freiburg, 
Freiburg, Germany, 3Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, 

United States 
 

Purpose: To identify a novel kind of sensitivity to micrometer-level magnetic tissue structure in the transverse relaxation time course 
Transverse relaxation in biological tissues is affected by diffusion of molecules across susceptibility-induced magnetic fields varying on the 
mesoscopic scale of paramagnetic cells, iron clusters, contrast doped extracellular space, etc. Recent theoretical analysis revealed an NMR signal 
metric that is exclusively sensitive to the statistics of the spatial organization of mesoscopic (cellular-level) tissue architecture.1-3 In brief, both 
diffusion and transverse relaxation take their simplest form (Gaussian for diffusion and the monoexponential for relaxation) in the limit of long times 
when the diffusion distance covered by NMR-visible molecules is much greater than the characteristic length scale in the medium (e.g. the cell size). 
This asymptotic behavior is achieved with a slow power-law approach with a dynamical exponent taking half-integer values depending on the type 
of structural disorder in the medium (a proper definition is given below). In other words, media can be random in a number of qualitatively distinct 
ways.1 Here we present the first direct experimental verification of such time-dependence of the transverse relaxation in disordered media of two 
distinct types. Specifically, we observe the theoretically expected behavior in a microbead phantom with two different types of structural disorder. 

Theory 
The characteristic power law approach of the transverse relaxation rate towards its long-time asymptote R2

∞ can be visualized by computing the time 
derivative of the instantaneous time-dependent relaxation rate dR2/dt = − d2/dt2 ln S(t) = const ·  t-ν, where S(t) is the free induction signal decay with 
time t. The dynamical exponent ν of the transverse relaxation has been shown to be connected to the type of structural organization, via ν = (p+d)/2 
in d dimensions.3 Here p is the structural exponent determined in terms of how slowly the two-point correlation function Γ2 = 〈χ(r)χ(0)〉 of magnetic 
susceptibility decreases at large point separation r.2 Formally, p is defined via the asymptotic form Γ2 ~ kp at k → 0 of the Fourier-transformed Γ2(k) 
at small wave vectors k (corresponding to large r). Fig. 1 shows Γ2(k) for microbead packings with the common short-range (Poissonian) disorder 
(structural exponent p = 0), and the maximally random jammed4,5 (MRJ) packing (p = 1) associated with high volume fractions of ~65%. The 
predicted dynamical exponents for dR2/dt are ν = 3/2 and ν = 2, respectively. 

Methods 
Sample preparation: All samples were prepared in standard 5mm NMR tubes. We suspended polystyrene microbeads (Dynoseed TS10, 
Microbeads AS, Norway) in water doped with sodium chloride and Holmium(III) chloride hexahydrate (HoCl3· 6H2O) in various concentrations to 
adjust the solution density and magnetic susceptibility, respectively. Suspensions with 30% volume fraction of microbeads were prepared using a 
particle-density matched sodium chloride solution (cNaCl=1.3M) to avoid sedimentation.6 MRJ samples were prepared by particle sedimentation in 
cNaCl=0.3M solution and careful removal of particle-free fluid from the top. NMR measurements were preformed on a Bruker DPX 200MHz using 
a standard zg30 sequence (AQT=4s, 16 aver., no spinning). The measurement acquisition parameters and shims were adjusted on pure D2O sample. 
Heated and dried compressed air maintained the sample at T=309K during the measurement after an initial settling in period of about 5 minutes to 
ensure the preheated sample to reach thermal equilibrium. Data Analysis: The time derivative of R2(t) was calculated as the second derivative of -ln 
S(t) using the Savitzky-Golay method with a linearly increasing kernel size3 of 0.7 · t. 
Results and Discussion 
The experimental data from both sample types (Fig. 2) clearly follow the predicted power law exponents ν = 3/2 and ν = 2, thereby distinguishing 
short-range disorder from the MRJ packing. This provides the first experimental validation for the recently predicted way to distinguish different 
magnetic structural disorder types, and offers a new paradigm for characterizing and probing magnetic tissue structure. 

Acknowledgement: This work was supported by DFG grant KI-1089/6-1. References: (1) D.S. Novikov et al. PNAS 111 (2014) 5088; (2) A. Ruh 
et al. Proc. ISMRM 20 (2012) 460; (3) A. Ruh et al. Proc. ISMRM 21 (2013) 3127; (4) S. Torquato et al. PRL 84 (2000) 2064; (5) A. Donev et al. 
PRL 95 (2005) 090604; (6) P. Emerich et al. Proc. ISMRM 22 (2014) 3124 

Fig. 1: Correlation functions of short-range 
disorder (red) and MRJ packing (green) for
simulated media show the characteristic
difference at low k, which translates into the
measurable exponent ν. 

Fig. 2: Observed time derivative of the instantaneous transverse relaxation rate follows the
theoretically predicted power law. The exponents ν = 3/2 and ν = 2 distinguish the random packing in
the suspension and the dense, more ordered packing in the sediment (left and right, respectively).
Shown are representative data sets with cHo = 1.5, 2.0 and 2.5 mM for the suspension (previously
reported6) and cHo = 1.3, 1.8 and 2.3 mM for the sediment (new data). The exponent ν = 2 is an
evidence of the maximally random jammed state4,5 in sediments. 

Microbead suspension at 30% Microbead sediment at ~ 65% 

Proc. Intl. Soc. Mag. Reson. Med. 23 (2015)    1667.

Signature	of	jamming	transition
in	dense	bead	suspensions

Ruh,	Kiselev et	al.	
Proc ISMRM	2015,	p.1667
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Conclusions

• Diffusion	=	coarse-graining
• Universality;	power-law	approach	to	D∞
• In-vivo	model	validation	tool	 # =

p+ d

2

 

 

ORGANIZATION OF RHESUS MONKEY COMMISSURES 527 

Fig. 5. A A series of desmosomal junctions (arrows) between two 
intermediate filament rich glial processes in the dorsal lamina of the 
hippocampat commissure glial capsule. Several medium-sized my- 
elinated axons as well as two very small unmyelinated axons are seen 
immediately adjacent to these interconnected glial processes. Magnifi- 
cation 21,000~. B: Apposition of two filamentous processes that  form a 
villus in the ventral lamina of the glial capsule that  delimits the hippo- 

campal cornmissure. The electron density of glial processes in this region 
varies from a dark granular matrix (left) to a light flocculent matrix 
(right). Often, the membranes of the processes seem to fuse for a moder- 
ate distance (arrows) and then separate again, perhaps forming tight or 
gap junctions. The external surface of the ventral lamina is bounded by 
a basal lamina, and the individual processes are attached to i t  via hemi- 
desmosomes (arrowheads) Magnification 30,000~. 

Fig. 6. A: Electron micrograph of axons in sector 2 of the corpus callosum in an adult rhesus monkey. 
Notice the clusters of small unmyelinated axons (asterisks). B Electron micrograph of axons in sector 6 of 
the same corpus callosum shown in A. In the center of this micrograph is an example of the very large axons 
encountered only in sectors 6,7, and 10. Both micrographs, 8,500~ magnification. 
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FIG. 4: Disorder types for d > 1.

dom bonds. These two situations are representatives of
the equivalence class

(
1, 12

)
of random bond and random

jump models[15, 16]. Other representatives include seg-
ments with different local diffusion coefficient, which can
be thought of as a varying density of microscopic barriers.

Another class of ordering,
(
1, 1

)
, is represented by the

periodic, or, more generally, hyperuniform [10] systems,
for which the variance (δN)2 ∼ 1 is not extensive. An ex-
ample is a crystal lattice with independently fluctuating
positions around equilibrium periodic sites. Technically,
the density correlator is a sequence of infinitely narrow
Bragg peaks, with Γ(q)|q→0 = 0.

More exotic ordering types emerge when the variance
(δN)2 ∼ L3−µ, 1 < µ < 2, grows faster than L, corre-
sponding to α = µ−1

2 . This situation can be realized by
independently added segments drawn from a Lévy distri-
bution p(a) ∼ 1/a1+µ, in which case the density correla-
tor diverges as Γ(q) ∼ |q|µ−2. Again, instead of allowing
segments with diverging variance σ2 = ∞, one could vary
the permeabilities on a regular lattice in such a way that
a number of elementary barriers placed at each site has
an infinite variance.

We show that the diffusion coefficientD(t) and the kur-
tosis K(t) are very sensitive to how spatially correlated
the barriers are. This correlation is quantified in terms
of the fluctuation of the number N(t) of the barriers
falling within the diffusion length L(t) in agreement with
Eq. (1). We relate this scaling to the probability density
function (PDF) p(a) of the intervals am = xm+1 − xm

between successive positions xm of the barriers; this rela-
tion is valid whenever a sample is made of random build-
ing blocks (e.g. cells). Depending on the variance σ2 of
p(a), we classify the disorder in their positions as falling
into the three types (Fig. 2): (a) order, σ → 0, corre-
sponding to perfect correlations (applicable to any peri-
odic arrangement of barriers, with one or more barriers

per unit cell); (b) strong disorder, σ → ∞, correspond-
ing to the “fat tail” in p(a) ∼ a−(1+µ), 1 < µ < 2,
when the barriers come in bunches separated by wide
gaps; (c) most common case of a moderate disorder char-
acterized by finite σ. These ordering types can be distin-
guished by the exponent α of the power-law decrease of
the relative fluctuation δN/ ⟨N⟩ ∼ L−α(t) in the number
of barriers falling within the diffusion length, leading to
(D(t)−D∞)/D∞ ∼ t−α.

is fully defined by the mean ā =
∫
ap(a) da and per-

meability κ, and is insensitive to the spatial arrangement
of the barriers, we find that the way it is approached
at large time t ≫ ā2/D∞ is sensitive to the disorder,
with the type (b) yielding the slowest decrease, α = µ−1

2 ,
0 < α < 1

2 ; type (a) the fastest one, α = 1; and the
type (c) corresponding to α = 1

2 with the exact prefactor
scaling as σ2,

D(t) = D∞

{

1 + λ

(
ζ

1 + ζ

)3

2

√
2

π

τr
t

}

, λ =
σ2

ā2
(3)

where τr = V/(Sκ) = ā/(2κ) is the residence time in a
typical interval (“pore”).

Remarkably, the finite-variance limit (3) is uniquely
determined by the mean and the variance of p(a), and
is independent of any other features of this PDF. This
rare case of a relative universality of diffusion properties
may be utilized as a practical way to quantify the degree
of ordering of the restrictions in quasi-one-dimensional
samples, by combining the short-time limit of D(t) yield-
ing D0 and S/V = 2/ā [5], with the long-time limit,
Eqs. (2) and (3), yielding the membrane permeability
and the variance in the inter-membrane intervals.

t�1

DðtÞ≡ hvðtÞvð0Þi∼ t−ð1+ϑÞ;   ϑ> 0: [2]

Practically, the power law tail 2 can be identified in the way the
time-dependent instantaneous diffusion coefficient

DinstðtÞ≡
∂
∂t

!
δx2

"

2
=
Z t

0

dt′ Dðt′Þ ’ D∞ + const · t−ϑ [3]

approaches the finite bulk diffusion constant D∞. The quantity
DinstðtÞ is accessible with techniques (3, 4) measuring the mean-
square molecular displacement hδx2ðtÞi in a particular direction
(Eqs. 4–6).
The relation 1 provides a way to determine the exponent p

and, thereby, the structural universality class, using bulk diffusion
measurement. Local properties may affect the coefficients, e.g.,

the values of D∞ and of the prefactor of t−ϑ in [3], but not the
exponent ϑ. The latter is robust with respect to variations
between samples of a similar origin, such as due to biological
variability. This picture is akin to critical phenomena (10), where
the phase transition temperature is nonuniversal (sensitive to
short-scale details), while the critical exponents distinguish, based
on global symmetries, between the universality classes of long-
range fluctuations.

Examples of Structural Universality Classes
Fig. 1 illustrates how diffusion distinguishes between the uni-
versality classes via the relation 1 in the d= 1 dimension. The
Monte Carlo (MC)-simulated diffusion is hindered by the
permeable barriers with mean density n= 1=a and permeability
κ (Materials and Methods). The universality classes, realized
here by the different ways of arranging the same 40,000 bar-
riers (sample cutouts shown in Fig. 1A), exhibit distinct structural
exponents p in the barrier density correlator (Fig. 1B), which result
in the distinct exponents 1 (Fig. 1C).

Order.Any periodic arrangement (such as Fig. 1, red) is reflected
in the Bragg peaks in ΓðkÞ, with Γ≡ 0 for k below the minimal
reciprocal lattice vector, formally corresponding to p=∞. As the
coarse-graining beyond the lattice constant does not increase
the structural fluctuations, DðtÞ decays and DinstðtÞ reaches D∞
exponentially fast, formally corresponding to ϑ=∞ (i.e., faster
than any inverse power law); see also SI Text, Section IIE.
Structural disorder comes in qualitatively different ways.

Short-Range Disorder. Short-range disorder is arguably the most
common disorder class, and it serves as a good reference point. It
is characterized by a finite correlation length lc, beyond which
the correlator ΓðrÞ decreases sufficiently fast, which corresponds
to the finite plateau in ΓðkÞjk→ 0 = const> 0, and the structural
exponent p= 0, similar to the Poissonian disorder (uncorrelated
restrictions). Finite correlation length means that, at larger dis-
tances, the variance of the number of restrictions scales in pro-
portion to their mean number in a given volume, consistent with
the central limit theorem. In Fig. 1 (blue), we chose each suc-
cessive interval am between barriers independently from the
distribution PðaÞ with mean a= 1=n and finite variance σ2. This
results in the finite plateau Γjk→ 0 = σ2=a3, as calculated in

A

B

C

Fig. 1. Time-dependent diffusion distinguishes between structural univer-
sality classes in one dimension, represented here by the placement of iden-
tical permeable barriers with the same mean density. (A) Order (red),
hyperuniform disorder (green), short-range disorder (blue), and strong dis-
order (magenta) are shown. (B) The barrier densities have qualitatively dif-
ferent large-scale fluctuations, reflected in the small-k behavior of their
density correlator ΓðkÞ∼ kp (see Examples of Structural Universality Classes).
(C) Numerical results confirming the relation 1. The time-dependence 3
clearly distinguishes between the four arrangements, while the value D∞ is
the same for all of them. The dashed lines are the exact power laws from
Eqs. S14, S19, and S23, and the exponential decrease is from the exact so-
lution, Eq. S25. Strong disorder occurs for 1< μ< 2; here μ= 7=4.

A B

C

D

E

Fig. 2. Structural universality classes in dimension d > 1. (A and B) The
examples of analogs of the d = 1 classes, corresponding to Fig. 1 (blue and
red). (C–E) The extended universality classes inherent to d > 1. (C) Random
membranes, with representatives shown for d = 2 and d = 3, result in ϑ = 1/2
for any d. (D) Random rods, with a representative shown for d = 3, result in
ϑ = 1 for any d. (E) Structure correlator Γ(k) ∼ kp (numerically calculated and
angular averaged, arbitrary units) for C (magenta in d = 2 and green in d = 3),
and for D (gray), exhibits the negative structural exponent p = –ds.
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Applications:
• Stroke
• Neurodegeneration	

(MS,	AD)
• Muscle	atrophy
• Tumors



• Review	on	dMRI modeling
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Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation1

Dmitry S. Novikov,1, ⇤ Sune N. Jespersen,2, † Valerij G. Kiselev,3, ‡ and Els Fieremans1, §
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We review, systematize and discuss models of diffusion in neuronal tissue, by putting them into an overarching7

physical context of coarse-graining over an increasing diffusion length scale. From this perspective, we view8

research on quantifying brain microstructure as occurring along the three major avenues. The first avenue9

focusses on the transient, or time-dependent, effects in diffusion. These effects signify the gradual coarse-10

graining of tissue structure, which occurs qualitatively differently in different brain tissue compartments. We11

show that studying the transient effects has the potential to quantify the relevant length scales for neuronal tissue,12

such as the packing correlation length for neuronal fibers, the degree of neuronal beading, and compartment13

sizes. The second avenue corresponds to the long-time limit, when the observed signal can be approximated14

as a sum of multiple non-exchanging anisotropic Gaussian components. Here the challenge lies in parameter15

estimation and in resolving its hidden degeneracies. The third avenue employs multiple diffusion encoding16

techniques, able to access information not contained in the conventional diffusion propagator. We conclude17

with our outlook on the future research directions which can open exciting possibilities for developing markers18

of pathology and development based on methods of studying mesoscopic transport in disordered systems.19
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