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How long does it take a random walker 

First-passage time
to reach a target site ? 

 
First-passage problems : First definitions  

Many physical processes are controlled by first-encounter properties 

Examples (i): diffusion limited reactions  

[with D. Normano, M. Dahan, Institut Curie]

1 mm

• Unicity of a target gene among billions of b.p. 
• Specific protein copy number can be < 10 

Transcription kinetics: proteins searching for a specific 
target sequence on DNA

100 mm

[with M. Piel, AM Lennon, Institut Curie]

Immune cells searching for pathogens

Examples (ii): Immune cells  



10 cm
[data O. Feinerman, Weizmann Institute]

Ants searching for food

Examples (iii): ants  

S

T

2. the distance r between S and T ?

r

- How does the mean FPT depend on
Main questions:

1. the confining volume N  ?

3. the transport process ? Effects of crowding,  
active/passive, anomalous transport

N

Efficiency of the search process? 
First-passage time statistics to a target 

1 mm

- Optimize ?

Brownian motion in a frozen disordered 
medium. 

⌧p
⌧e

⌧e ⌧ ⌧p

⌧e � ⌧p

⌧e ⇠ ⌧p

Diffusion in complex environments : Markov vs. non Markov

If

 ex. Brownian motion

Markov process, no memory

If

Markov process, no memory 
ex. rw. on percolation cluster 

If
N particles system is Markovian,  
but single particle non Markovian, memory
ex. monomer of a rouse chain 

Note that different from anomalous vs normal diffusion

(quasi) 1D geometries 
[see S. Redner’s book]

 
Theoretical context: Markov (almost) only  

[highly non-exhaustive biblio…]

TSS T

Universality classes of first-passage time distributions
(Dated: January 12, 2009)

It has been appreciated for long that transport properties can influence reaction kinetics. This
effect ,which has been proved limiting in several situations, and especially in the context of reactions
in cells where very small number of reactants are involved, can be quantified by the time it takes
a diffusing molecule to reach a target, the so-called first-passage time.Recently, the first moment
of this quantity – the mean FPT – has been calculated. Here, despite the inherent complexity of
the problem, we calculate the entire FPT distribution and fully characterize its university classes.
Beyond this theoretical aspect, this result has important consequences, completely changing the
views of standard reaction kinetics. We argue that the geometry can become a key parameter of
reaction kinetics so far ignored in this context, and introduce the concept of ”geometry controlled
kinetics” : as soon as the environment is crowded enough, the spatial organization of reactants
controls the kinetics.

PACS numbers: 87.10.+e,05.40.Fb,05.40.Jc

∆S⟨T⟩S = −1 (1)

∂S⟨T⟩S∈ bound. = 0 (2)

B = 1 (3)

⟨T⟩/N ∼ A + Brdw−df (4)

⟨T⟩/N ∼ rdw−df (5)

ψ(t) ∼ C/t1+β (6)

Prob.(T = t) ∼ C⟨n⟩/t1+β (7)

⟨n⟩ ∼ N(A − B/r) (8)

⟨T⟩return = 1/Pstat = N (9)

(d = 3)
dw = 2/β
A first step to estimate the kinetics of transport in-

fluenced reactions consists in evaluating first-encounter
properties between reactants. Quantitatively, we are
back to calculate the distribution of the time it takes
a diffusing molecule to reach a target site, in presence of
a confinement – the FPT distribution. The issue of de-
termining the importance of geometrical parameters on
this search time has raised a growing interest both ex-
perimentally [Mirny] and theoretically [Nous nature +
Pnas]. More precisely (i) how does it depend on the
volume of the system ? (ii) how does it depend on the
initial position of the walker ? A central related ques-
tion we especially would like to discuss in this article is

the following : is the initial position of the molecule an
important parameter of the kinetics or not ?

A first step in this direction consists in determining
the first moment of the FPT. It has recently be achieved,
and a universal linear scaling with the volume was shown.
However, as soon as the distribution is not exponential,
the first moment contains only a very partial information
on the dynamics. This effect has been shown to be espe-
cially important in single molecule experiments ... Here
we show that for reactivity in confinement, there are im-
portant effects.

We consider a random walker of position r(t) evolving
on a structure of fractal dimension df . Its dynamics is
characterized by the dimension of the walk dw defined by
: r2(t) ∝ t2/dw(t). We assume that the walker is confined
in a domain of N sites with reflecting walls, and we are
interested in the distribution PTS(t) of the time taken to
reach for the first time the target site T starting from the
site S at a distance r from T .

We start from the equation satisfied by the probability
P (TTS = n)

P (TTS = n) =
∑

j

wjSP (TTj = n − 1) (10)

obtained by partitioning over the first step of the walk.
Laplace transforming this equation, it is easy to obtain
the following hierarchy satisfied by the moments of the
FPT :

∑

j

wjS⟨Tn
Tj⟩ =

n∑

k=0

(
n

k

)
(−1)k⟨Tn−k

TS ⟩, (11)

which can be inverted into

⟨Tn
TS⟩ =

∑

j

n∑

k=1

(
n

k

)
(−1)k+1(HTT−HTS+HjS−HjT )⟨Tn−k

Tj ⟩.

(12)
where

Hji =
∞∑

n=0

(Wji(n) − W stat
j (n)) (13)

Mean return times 
[Kac,Hilfer, Blumen…]

Singular perturbation of the Laplacian 
(Brownian motion 2D and 3D) [Ward and Keller, Holcman and Schuss]

Infinite space 
Persistence exponents (Markov and non Markov) [Majumdar, Bray...]



MFPT averaged over starting point  

No information on the target : average over starting point (GMFPT)

 [Montroll 1965 (Euclidean lattices), ben Avraham 2005 (fractals)...] 

Optimal strategy: 
less compact do better = minimize overlap 

Effet of initial position ?

For general scale invariant  (             )  random walks with                            : 

non compact (transient)

compact (recurrent)

Markov:

h�r2i / t2/dw

I/ Reminder : 
     First-passage time statistics in complex media 
    (Markovian scale-invariant processes) 

 

Outline

 
Main ingredients

G0(r) =
Z 1

0
W0(r, t)dt

W (rT , t|rS) =
� t

0
P (rT , t�|rS)W (rT , t� t�|rT )dt�

first visit of T at t’ return at T in t-t’

W (r, t|r�)
P (r, t|r�)

 (i) Markov process : “Renewal equation”  
the propagator
the first-passage time density

relates

 (ii) large volume asymptotics : 

where is the infinite-space Green function

⇤T⌅ ⇥ N(G0(0)�G0(r))

H(r|r�) =
� ⇥

0
(W (r, t|r�)� 1/N)dt

⇥T⇤ = N(H(rT |rT ) � H(rT |rS)) [Noh & Rieger (2004)]

where

Exact expression:

is the pseudo-green function

P F P

P

P
F

P0

• mean square displacement h�r2i / t2/dw

r

Mr � rdf• number of sites enclosed in a circle of radius r :  
where df  is the fractal dimension of the medium

where dw  is the dimension of the walk

W⇤(r, t|r⇥) ⇥ t�df /dw�
�

|r� r⇥|
t1/dw

⇥
• standard scaling assumption of the infinite-space propagator :

[ben-Avraham and Havlin, (2000)]

 
(iii)  Scale invariance

P0



dw < df

• Linear dependence on the volume N   

• A and B depend only on the infinite-space scaling 

• non-compact exploration (                   ) : memory of the initial position lost

• compact exploration (                   ): the initial position always matters

General scaling of the MFPT  
[Condamin et al Nature (2007)]

�T⇥

r

�T⇥

r

non-compact

compact

where the fractal dimension df characterizes the number of sites

Nr / rdf within a sphere of radius r, P is the infinite space scaling
function, and dw has been defined previously. This form ensures
the normalization of W0 by integration over the whole fractal set. A
derivation given in Supplementary Information then yields our cent-
ral result:

Th i*
N (A{Brdw{df ) for dwvdf

N (AzB ln r) for dw~df

N (AzBrdw{df ) for dwwdf

8
><

>:
ð6Þ

for r5 jrT2 rSj different from 0; here ‘,’ indicates large N asymp-
totic equivalence. Strikingly, the constants A and B do not depend on
the confining domain. In addition, whereas A is related to the small-
scale properties of the walk, we emphasize that B can be written solely
in terms of P (a precise definition of A and B is given in
Supplementary Information). These expressions therefore unveil a
universal scaling dependence of the MFPT on the geometrical para-
meters N and r.

Several comments are in order. First, we point out that equation
(6) gives the large N asymptotics of the MFPT, which is a function
of N and r as independent variables. In particular, the volume
dependence is linear in N for r fixed in any case, which can not be
inferred from the standard scaling Th i!Ldw , L being the charac-
teristic length of the domain of orderN 1=df . Second, a global rescaling
of the problem r R lr, L R lL, when applied to equation (6), gives
the standard form Th i!ldw for dw. df and Th i!ldf for dw, df in
accord with refs 27 and 28. Third, equation (6) shows two regimes,
which rely on infinite space properties of the walk: in the case of
compact exploration3 (dw$ df) where each site is eventually visited,
the MFPT behaves like Th i!Nrdw{df ( Th i!N ln r for dw5 df) at
large distances, so that the dependence on the starting point always
matters; in the opposite case of non-compact exploration, Th i tends
to a finite value for large r, and the dependence on the starting point is
lost.

We now confirm these analytical results by Monte Carlo simu-
lations and exact enumeration methods applied to various models
that exemplify the three previous cases. (1) The randombarriermodel
in two dimensions3 is a widespread model of transport in disordered
systems in which MFPT properties remain widely unexplored. It is
defined by a lattice randomwalkwith nearest neighbours symmetrical
transition rates C distributed according to some distribution r(C).
Even for a power law distribution r(C) the scaling functionP(j) can
be shown to be gaussian10 (df5 dw5 2), which allows us to explicitly
compute the constant B and obtain Th i*N (Az(1=2pDeff ) ln r).
HereDeff is a diffusion constant depending on r(C) that can be deter-
mined by an effective medium approximation10 (Supplementary

Information). (2) The Sierpinski gasket of finite order is a represent-
ative example of deterministic fractals, described in Fig. 1. In this case3

df5 ln 3/ln 2, ln 5/ln 25 dw, so that our theory predicts the scaling
Th i!Nr( ln 5{ ln 3)= ln 2. (3) The Lévy flight model of anomalous dif-
fusion11,23 is based on a fat-tailed distribution of jump lengths
p(l)!l{d{b (0,b# 2). Thewalk dimension is now dw5b, whereas
the fractal dimension is the dimension of the euclidian space d . In
dimensions d$ 2, or for d5 1 when b, 1, one has df. dw and our
theory gives Th i*N (A{Brb{d).

Figure 2a–c reveals excellent quantitative agreement between the
analytical predictions and the numerical simulations. Both the
volume dependence and the source–target distance dependence are
unambiguously captured by our theoretical expressions, equation
(6), as shown by the data collapse of the numerical simulations.
We emphasize that the very different nature of these examples
demonstrates that the range of applicability of our approach, which
mainly relies on the length-scale-invariant property of the infinite
space propagator (equation (5)), is wide.

These analytical results can be extended to scale-free networks. The
latter are characterized by a power-law degree distribution. A wide
class of scale-free networks has been proven recently to be invariant
under a length-scale renormalization scheme defined in ref. 15: social
networks20, the world wide web29, metabolic networks22, and yeast
protein interaction networks (PIN)21. Although the standard fractal
dimension df of these networks is infinite as their diameter scales as
lnN, one can show that they are scale-invariant in the following sense:
they can be covered with NB non-overlapping boxes of size lB with
NB=N!l{dB

B . This renormalization property defines an alternative
scaling exponent called the box dimension dB, which is actually equal
to the fractal dimension defined earlier as long as the networks are
not of small-world type. A model of scale-free networks possessing
such length-scale-invariant properties has been defined recursively in
refs 12 and 30: the network grows by addingm new offspring nodes to
each existing network node, resulting in well defined modules. In
addition, modules are connected to each other through x random
links (Supplementary Information). In this case dB5 ln(2m1 x)/ln3
and dw5 ln(6m/x1 3)/ln3.

For this class of networks, Wstat(r) is not uniform any more but
proportional to the degree k(r) of the node r. One can use the length-
scale-invariant property to infer the following scaling of the infinite
space propagator:

W0(r,t jr0)
k(r)

!t{dB=dwP
jr{r0j
t1=dw

! "
ð7Þ

This form, compatible with the symmetry relations proposed in ref.
24, allows us to perform a similar derivation, which leads for the
MFPT to the same result (equation (6)), but where df is to be replaced

S

T

a b

8
2

32

Degree

Figure 1 | Length-scale-invariant networks. a, The Sierpinski gasket (here
of order three) is a representative example of a deterministic fractal. A
sample random path from S to T is shown. b, The yeast PIN, obtained from

the filtered yeast interactome developed in ref. 21. Picture generated by
LaNet-vi software (http://xavier.informatics.indiana.edu/lanet-vi/).
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dw � df

18

1 10

Source-target chemical distance
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FIG. 3:

Source target distance

Numerics
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N = 403 cube, target at (2,0,0)
N = 403 cube, target at (4,4,0)

Non compact: 
ex: Brownian diffusion in 3D

Compact: 
ex: Diffusion on percolation cluster
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Source target distance

S

T

	S

T
r

Initial position doesn’t matter 
1 time scale : first-order kinetics

Dilute medium (3d regular diffusion)
�T⇥

r

�T⇥

r

Crowded medium (3d percolation cluster)

Initial position is a key parameter: 
many time scales

Non-compact 
exploration

Compact 
exploration

“Geometry controlled kinetics”

Reaction kinetics in complex media ?

 [Nature Chemistry 2010]

Is intracellular transport in the nucleus compact or non compact ?

Outline

II/ General (Gaussian) non Markovian processes 

H: Gaussian process x(t) with stationary increments: fully defined by  

2

the reaction kinetics is quantified by the first encounter properties between molecules2. First-passage properties

have been studied intensively in the last decades1,3,15 and are now well understood when the stochastic motion of

the reactants satisfies the Markov property, i.e. is memoryless. Under this assumption, exact asymptotic formulas

characterizing the first-passage time of a tracer to a target located inside6,7,16 or at the boundary15 of a large confining

volume have been obtained. These studies reveal that the geometrical parameters, as well as the complex properties

of the stochastic transport process (such as subdi↵usion), can have a strong impact on the reaction kinetics3,6,7.

However, as a general rule, the dynamics of a given reactant results from its interactions with its environment

and cannot be described as a Markov process. Indeed, while the evolution of the set of all microscopic degrees

of freedom of the system is Markovian, the dynamics restricted to the reactant only is not. This is typically the

case of a tagged monomer, whose non-Markovian motion results from the structural dynamics of the whole chain to

which it is attached9,17,18, as observed e.g. in proteins19. Other experimentally observed examples of non Markovian

dynamics include the di↵usion of tracers in crowded narrow channels8 or in complex fluids such as nematics11 or

viscoelastic solutions13,14. Even in simple fluids, hydrodynamic memory e↵ects and thus non Markovian dynamics

have been recently observed10. So far, most of theoretical results on first-passage properties of non-Markovian processes

have been limited to specific examples17,18,20–22 or to unconfined systems, where non trivial persistence exponents

characterizing its long time decay have been calculated23–25. However, in many situations, geometric confinement

plays a key role in first-passage kinetics3,6,7. Here, we develop a theoretical framework to determine the mean FPT

of non-Markovian random walkers in confinement.

More precisely, we consider a non-Markovian Gaussian stochastic process x(t), defined in unconfined space, which

represents the position of a random walker at time t, starting from x0 at t = 0. As the process is non-Markovian,

the FPT statistics in fact depends also on x(t) for t < 0. For the sake of simplicity, we assume that at t = 0 the

process of constant average x0 is in stationary state (see SI for more general initial conditions), with increments

x(t + ⌧) � x(t) independent of t. The process x(t) is then entirely characterized by its Mean Square Displacement

(MSD)  (⌧) = h[x(t + ⌧) � x(t)]2i. Such a quantity is routinely measured in single particle tracking experiments

and in fact includes all the memory e↵ects in the case of Gaussian processes. At long times, the MSD is assumed to

diverge and thus, typically, the particle does not remain close to its initial position. Last, the process is continuous

and non smooth25 (hẋ(t)2i = +1), meaning that the trajectory is irregular and of fractal type, similarly to the

standard Brownian motion. Note that the class of random walks that we consider here covers a broad spectrum of

non-Markovian processes used in physics, and in particular the examples mentioned above.

here assumed given (obtained typically from single particle tracking)



Protein	dynamics

x(t)

Tracers	beads		
in	nema1cs

Gaussian		
distribu1ons

P(x)

x	(nm)

Non	trivial	MSD	or	
correla1on	func1ons

	

[Min	et	al,	PRL	2005]	[Turiv	et	al,	Science,	2013]

Examples of non Markovian Gaussian processes

Gaussian process with non linear MSD is non Markovian (Doob’s theorem)

x(t)

Tracers	beads		
in	nema1cs

Colloids	in	crowded	
narrow	channels

[Wei	et	al,	Science,	2000]
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Main ingredients (i)

first visit of T at t return at T in t-t

 (i) Generalized Renewal equation 
the 1 point pdf
the first-passage time density

relates

Exact expression:

3

The random walker is now confined in a domain of volume V with reflecting walls, and we focus on its mean FPT

to a target of position x = 0 (see Fig. 1). Note that this setting gives also access to the reaction kinetics of a reactant

in the presence of a concentration c = 1/V of targets in infinite space. While the theory can be developed in any

space dimension (see SI for an explicit treatment of the 2-dimensional and 3-dimensional cases), it is presented here

for clarity in dimension 1 (see Fig. 1b). Our starting point is the following generalization of the renewal equation1

p(0, t) =
Z t

0
d⌧F (⌧)p(0, t|FPT = ⌧), (1)

which results from a partition over the first-passage event. In this equation, p(0, t) stands for the probability density

for being at position x = 0 at time t, F is the FPT density and p(0, t|FPT = ⌧) is the probability that x = 0 at

time t given that the first-passage event occurred at time ⌧ . Due to the confinement, p(0, t) reaches for large times

the stationary value 1/V . Next, substracting 1/V to Eq. (1) and integrating over t from 0 to infinity yields an exact

expression for the mean FPT :

hTi
V

=
Z 1

0
dt[q⇡(t)� p(0, t)], (2)

where q⇡(t)dx is the probability to observe the random walker in the interval [0, dx] at the time t after the first-passage

to the target. The exact formula (2) is a generalization of the expression obtained for Markovian processes6,26 and

holds for any non-Markovian process (even non-Gaussian). Even if q⇡(t) is a priori a non trivial quantity because it

is conditioned by first-passage events, this equation is of great practical use to determine the mean FPT as we show

next.

To proceed further, we (i) consider the large volume limit V !1 (where it is assumed that all boundary points are

sent to infinity) and (ii) assume that the stochastic process in the future of the FPT, defined by y(t) ⌘ x(t+FPT), is

Gaussian with mean µ(t) and same covariance as the initial process x(t) (see Fig. 1b). Simulations and perturbation

theory below show the broad validity of this approach. Eq.(2) then leads to :

hTi = V

Z 1

0
dt

e�µ(t)2/2 (t) � e�x2
0/2 (t)

[2⇡ (t)]1/2
. (3)

Relying on a generalization of Eq.(1) to link the n times pdfs of x(t1), x(t2), ... and the FPT density, we obtain an

equation for the probability of the future trajectories y(t) leading to (see SI for details):

Z 1

0

dt
p

 (t)

n

[µ(t + ⌧)� µ(t)K(t, ⌧)] e�µ(t)2/2 (t) � x0[1�K(t, ⌧)]e�x2
0/2 (t)

o

= 0, (4)

where µ(0) = 0 and K(t, ⌧) = [ (t+ ⌧)+ (t)� (⌧)]/[2 (t)]. Eq.(4), which allows for a self-consistent determination

of the mean future trajectory µ(t), together with Eq.(3), provide the mean FPT and constitute our main result.

3

The random walker is now confined in a domain of volume V with reflecting walls, and we focus on its mean FPT

to a target of position x = 0 (see Fig. 1). Note that this setting gives also access to the reaction kinetics of a reactant

in the presence of a concentration c = 1/V of targets in infinite space. While the theory can be developed in any

space dimension (see SI for an explicit treatment of the 2-dimensional and 3-dimensional cases), it is presented here

for clarity in dimension 1 (see Fig. 1b). Our starting point is the following generalization of the renewal equation1

p(0, t) =
Z t

0
d⌧F (⌧)p(0, t|FPT = ⌧), (1)

which results from a partition over the first-passage event. In this equation, p(0, t) stands for the probability density

for being at position x = 0 at time t, F is the FPT density and p(0, t|FPT = ⌧) is the probability that x = 0 at

time t given that the first-passage event occurred at time ⌧ . Due to the confinement, p(0, t) reaches for large times

the stationary value 1/V . Next, substracting 1/V to Eq. (1) and integrating over t from 0 to infinity yields an exact

expression for the mean FPT :

hTi
V

=
Z 1

0
dt[q⇡(t)� p(0, t)], (2)

where q⇡(t)dx is the probability to observe the random walker in the interval [0, dx] at the time t after the first-passage

to the target. The exact formula (2) is a generalization of the expression obtained for Markovian processes6,26 and

holds for any non-Markovian process (even non-Gaussian). Even if q⇡(t) is a priori a non trivial quantity because it

is conditioned by first-passage events, this equation is of great practical use to determine the mean FPT as we show

next.

To proceed further, we (i) consider the large volume limit V !1 (where it is assumed that all boundary points are

sent to infinity) and (ii) assume that the stochastic process in the future of the FPT, defined by y(t) ⌘ x(t+FPT), is
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Can be solved (at least numerically) + exact asymptotics for simple  (t)
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Limit of single file, Rouse, Edwards-Wilkinson

Take the derivatives with  respect to t and t’ : 

hẋ(t)ẋ(t0)i = K2H(2H � 1)
1

(t � t0)2�2H

persistent superdiffusion
8
>>>>>><

>>>>>>:

> 0 if H > 1
2

= 0 if H = 1
2

< 0 if H < 1
2 anti-persistent subdiffusion

regular diffusion

h[x(t) � x(t0)]2i = K(t � t

0)2HMSD

Model with long-range correlated increments : 
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π ({xi}) Probability density of the configuration {xi}  
at the very instant of reaction

How can we calculate                 ? 
-	Wilemski-Fixman approx: replace       by the equilibrium distribution 

- Our approach:	find the Gaussian distribution that is the closest from  
Solve closure equations for : 

average positions of monomers at first contact 

π ({xi})
π

π

π {xi}( ) = Pstat {xi} x1 = 0( )

T = V dt
0

∞

∫ P x1 = 0,t π ,0( ) − P x1 = 0,t ini,0( )⎡⎣ ⎤⎦

mi

Non Markovian theory
 [Nature Chemistry 2012]

Elongated shape at first contact                     faster kinetics / Markovian theory

Conformations at first contact  
(non-Markovian theory)

Equilibrium conformations  

Configurations at first contact
 [Nature Chemistry 2012]

Markovian theory assumes implicitly an equilibrium reactive con-
formation, the non-Markovian theory shows that the reaction
takes place when the polymer is, in fact, much more extended
than in its equilibrium conformation, thus increasing the effective
reaction radius, as shown in Fig. 5. This contribution of non-
Markovian effects turns out to be quantitatively important,
because in this regime of intermediate targets the Markovian
approximation leads to an error in the estimate of the reaction
time of roughly 100%.

Although we focus here on the Rouse model, we stress that the
fact that such non-Markovian effects are characterized by non-equi-
librium polymer conformations at the instant of the reaction holds
true for more general models of polymer dynamics. Our method
can be extended to general Gaussian models, which play a key
role in polymer dynamics and enable the modelling of various phys-
icochemical conditions. Examples of such Gaussian theories include
the ‘pre-averaging’ approach of hydrodynamic interactions22, the
approximate Rouse modes in the case of self-avoiding polymers37

and the description of semi-flexible chains and branched polymers
with a Gaussian theory38,39. Qualitatively, we expect the non-
Markovian effects to be significant when the search at small time-
scales is compact, so that the transport step plays a crucial role in
the kinetics. This includes the case of self-avoiding chains as well
as chains with hydrodynamic interactions in theta solvent. Lastly,
at the experimental level, the formation of hairpins in nucleic
acids9,11,13,16 and the folding of polypeptide chains10,14,15 constitute
important examples of cyclization reactions. So far, among the ana-
lytical tools available to interpret the observations, only Markovian
theories have been used10,11,14,15, but we anticipate that taking into
account non-Markovian effects, as quantified by our approach, could
improve the quantitative analysis of experimental data.

To conclude, we propose a new theory of polymer reaction kin-
etics that takes into account the non-Markovian effects that control
the dynamics of polymers. This non-Markovian theory gives results

that are in quantitative agreement with numerical simulations for
all ranges of parameters, and therefore significantly outperforms
existing Markovian approaches. Our analysis reveals that the
non-equilibrated conformation of the polymer at the instant of
the reaction has an important impact on the reaction kinetics. We
show quantitatively that the typical reactive conformation of the
polymer is more extended than the equilibrium conformation,
which leads to reaction times that are significantly shorter than
those predicted by existing Markovian theories. Together, our
results provide a better understanding of the complex kinetics of
polymer reactions involved, for example, in the formation of loops
of RNA or polypeptides chains.
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Finally : General scaling of the MFPT  

�T⇥

r

�T⇥

r

non-compact

compact

where the fractal dimension df characterizes the number of sites

Nr / rdf within a sphere of radius r, P is the infinite space scaling
function, and dw has been defined previously. This form ensures
the normalization of W0 by integration over the whole fractal set. A
derivation given in Supplementary Information then yields our cent-
ral result:

Th i*
N (A{Brdw{df ) for dwvdf

N (AzB ln r) for dw~df

N (AzBrdw{df ) for dwwdf

8
><

>:
ð6Þ

for r5 jrT2 rSj different from 0; here ‘,’ indicates large N asymp-
totic equivalence. Strikingly, the constants A and B do not depend on
the confining domain. In addition, whereas A is related to the small-
scale properties of the walk, we emphasize that B can be written solely
in terms of P (a precise definition of A and B is given in
Supplementary Information). These expressions therefore unveil a
universal scaling dependence of the MFPT on the geometrical para-
meters N and r.

Several comments are in order. First, we point out that equation
(6) gives the large N asymptotics of the MFPT, which is a function
of N and r as independent variables. In particular, the volume
dependence is linear in N for r fixed in any case, which can not be
inferred from the standard scaling Th i!Ldw , L being the charac-
teristic length of the domain of orderN 1=df . Second, a global rescaling
of the problem r R lr, L R lL, when applied to equation (6), gives
the standard form Th i!ldw for dw. df and Th i!ldf for dw, df in
accord with refs 27 and 28. Third, equation (6) shows two regimes,
which rely on infinite space properties of the walk: in the case of
compact exploration3 (dw$ df) where each site is eventually visited,
the MFPT behaves like Th i!Nrdw{df ( Th i!N ln r for dw5 df) at
large distances, so that the dependence on the starting point always
matters; in the opposite case of non-compact exploration, Th i tends
to a finite value for large r, and the dependence on the starting point is
lost.

We now confirm these analytical results by Monte Carlo simu-
lations and exact enumeration methods applied to various models
that exemplify the three previous cases. (1) The randombarriermodel
in two dimensions3 is a widespread model of transport in disordered
systems in which MFPT properties remain widely unexplored. It is
defined by a lattice randomwalkwith nearest neighbours symmetrical
transition rates C distributed according to some distribution r(C).
Even for a power law distribution r(C) the scaling functionP(j) can
be shown to be gaussian10 (df5 dw5 2), which allows us to explicitly
compute the constant B and obtain Th i*N (Az(1=2pDeff ) ln r).
HereDeff is a diffusion constant depending on r(C) that can be deter-
mined by an effective medium approximation10 (Supplementary

Information). (2) The Sierpinski gasket of finite order is a represent-
ative example of deterministic fractals, described in Fig. 1. In this case3

df5 ln 3/ln 2, ln 5/ln 25 dw, so that our theory predicts the scaling
Th i!Nr( ln 5{ ln 3)= ln 2. (3) The Lévy flight model of anomalous dif-
fusion11,23 is based on a fat-tailed distribution of jump lengths
p(l)!l{d{b (0,b# 2). Thewalk dimension is now dw5b, whereas
the fractal dimension is the dimension of the euclidian space d . In
dimensions d$ 2, or for d5 1 when b, 1, one has df. dw and our
theory gives Th i*N (A{Brb{d).

Figure 2a–c reveals excellent quantitative agreement between the
analytical predictions and the numerical simulations. Both the
volume dependence and the source–target distance dependence are
unambiguously captured by our theoretical expressions, equation
(6), as shown by the data collapse of the numerical simulations.
We emphasize that the very different nature of these examples
demonstrates that the range of applicability of our approach, which
mainly relies on the length-scale-invariant property of the infinite
space propagator (equation (5)), is wide.

These analytical results can be extended to scale-free networks. The
latter are characterized by a power-law degree distribution. A wide
class of scale-free networks has been proven recently to be invariant
under a length-scale renormalization scheme defined in ref. 15: social
networks20, the world wide web29, metabolic networks22, and yeast
protein interaction networks (PIN)21. Although the standard fractal
dimension df of these networks is infinite as their diameter scales as
lnN, one can show that they are scale-invariant in the following sense:
they can be covered with NB non-overlapping boxes of size lB with
NB=N!l{dB

B . This renormalization property defines an alternative
scaling exponent called the box dimension dB, which is actually equal
to the fractal dimension defined earlier as long as the networks are
not of small-world type. A model of scale-free networks possessing
such length-scale-invariant properties has been defined recursively in
refs 12 and 30: the network grows by addingm new offspring nodes to
each existing network node, resulting in well defined modules. In
addition, modules are connected to each other through x random
links (Supplementary Information). In this case dB5 ln(2m1 x)/ln3
and dw5 ln(6m/x1 3)/ln3.

For this class of networks, Wstat(r) is not uniform any more but
proportional to the degree k(r) of the node r. One can use the length-
scale-invariant property to infer the following scaling of the infinite
space propagator:

W0(r,t jr0)
k(r)

!t{dB=dwP
jr{r0j
t1=dw

! "
ð7Þ

This form, compatible with the symmetry relations proposed in ref.
24, allows us to perform a similar derivation, which leads for the
MFPT to the same result (equation (6)), but where df is to be replaced

S

T

a b

8
2

32

Degree

Figure 1 | Length-scale-invariant networks. a, The Sierpinski gasket (here
of order three) is a representative example of a deterministic fractal. A
sample random path from S to T is shown. b, The yeast PIN, obtained from

the filtered yeast interactome developed in ref. 21. Picture generated by
LaNet-vi software (http://xavier.informatics.indiana.edu/lanet-vi/).
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True for Markov and non Markov 
Non trivial even if it looks trivial: 
- the Markov approx.               can be very wrong (scaling wise) 
- 2 or 3 length scales in the problem 
- prefactor can depend a lot on non Markovian effects          

µ = 0

- if no information on the target : less compact walks do better  
- if the target is close : compact walks can yield short time scales  

Finally
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