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Introduction and motivation

In recent years, anomalous diffusion has been identified as a

ubiquitous phenomenon in complex and biophysical systems.

The issue of distinguishing between normal and anomalous

diffusion concerns many fields of physics.

Most of the methods are based on the mean square

displacement (MSD) analysis.

Normal (classical) diffusion: < X 2(t) >∼ t

Anomalous diffusion: < X 2(t) >∼ tβ (β < 1 - subdiffusion,

β > 1 - superdiffusion).

It is not clear which model applies to a particular system.

Information which is essential when diffusion-controlled

processes are considered.
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Introduction and motivation

The MSD can be obtained either by performing an average

over an ensemble of particles, or by taking the temporal

average over a single trajectory (time average MSD, TAMSD).

MN(τ) =
1

N − τ

N−τ∑

j=1

(X (j + τ)− X (j))2 (1)

Recent advances in single molecule spectroscopy enabled

single particle tracking experiments following individual

particle trajectories. These require temporal moving averages.
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Anomalous diffusion processes - FBM

FBM is a generalization of classical Brownian motion.

Most of its statistical properties are characterized by Hurst

exponent 0 < H < 1.

FBM has found may applications.

FBM is zero-mean Gaussian process

BH(t) =

∫ ∞

−∞

{
(t − u)

H−1/2
+ − (−u)

H−1/2
+

}
dB(u).

(x)+ = max(x , 0).

FBM is H−self similar BH(ct)
d
= cHBH(t), c > 0.
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Anomalous diffusion processes - FBM

FBM has stationary increments.

For the second moment
〈
B2H(t)

〉
= σ2t2H , σ > 0.

For H < 1/2 FBM gives the subdiffusive dynamics, for

H > 1/2 FBM gives the superdiffusive one.

For H > 1/2 the increments are positively correlated and

exhibit long-range dependence.

For H < 1/2 the increments are negatively correlated and

exhibit short-range dependence.

Fractional Gaussian noise (FGN) bH(t) = dBH(t)/dt.
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Anomalous diffusion processes - FLSM

FLSM is a generalisation of FBM

LαH(t) =

∫ ∞

−∞

{
(t − u)

H−1/α
+ − (−u)

H−1/α
+

}
dLα(u),

where Lα(t) is a Lévy α−stable motion 0 < α ≤ 2 and
0 < H < 1

FLSM is α−stable.
For α = 2 it becomes FBM.

FLSM is H−self similar and has stationary increments.
For H > 1/α FLSM exhibits positive, long-range dependence.

For H < 1/α FLSM exhibits negative dependence.

Fractional Lévy stable noise (FLSN) lαH(t) = dLαH(t)/dt.
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Anomalous diffusion processes - CTRW

The CTRW model is defined as:

Y (t) =

N(t)∑

i=1

Xi ,

where N(t) is a a counting process

N(t) = max

{
k ≥ 0 :

k∑

i=1

Ti ≤ t

}
.

Here Ti i = 1, 2, ... form a sequence of positive i.i.d. random

variables which can be seen as waiting times between consecutive

jumps Xi .

Agnieszka Wyłomańska Statistical investigation of anomalous diffusion processes



Anomalous diffusion processes - CTRW

If we assume the waiting time sequence constitutes sample from

α−stable distribution with index of stability α ∈ (0, 1) while jumps

are i.i.d. random variables with finite moments then

Y (nt)

nα/2
d→B(S−1

α (t)),

where B(·) is a standard Brownian motion and S−1
α (·) is inverse

stable subordinator defined as

S−1
α (t) = inf {τ : U(τ) > t} .

{U(τ)} denotes strictly increasing stable Lévy motion, i.e., a Lévy
stable process with stationary independent increments of the

following Laplace transform

E (e−kU(τ)) = e−τkα

, 0 < α < 1.
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Anomalous diffusion processes - CTRW

The CTRW with heavy-tailed waiting times is described also by

FFPE
∂w(x , t)

∂t
=0 D

1−α
t

[
1

2

∂2

∂x2

]
w(x , t),

w(x , 0) = δ(x). The operator 0D
1−α
t , 0 < α < 1 is the fractional

derivative of the Riemann-Liouville type.

The MSD of CTRW equals tα

Γ(α+1) , which is characteristic for

subdiffusive dynamics.
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Tools for anomalous diffusion recognition - distribution

testing

We assume data are stationary (like increments of FBM or

FLSM).

Problem: testing class of distribution - heavy or light tailed.

Recognition of stable distribution with Lévy index close to 2.

Discriminating between light- and heavy-tailed distributions

with limit theorem.
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Recognition of stable distribution with Lévy index close to

2

We address the problem of recognizing alpha-stable Lévy

distribution with Lévy index close to 2 from experimental data.

We are interested in the case when the sample size of

available data is not large, thus the power law asymptotics of

the distribution is not clearly detectable, and the shape of

empirical probability density function is close to a Gaussian.

We propose a testing procedure combining a simple visual test

based on empirical fourth moment with the Anderson-Darling

and Jarque-Bera statistical tests.

We apply our method to the analysis of turbulent plasma data.
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Recognition of stable distribution with Lévy index close to

2
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Figure: The two empirical PDFs calculated for simulated samples

from Lévy stable distribution with parameters α = 1.98, β = 0,

σ = 1 and µ = 0, and from Gaussian distribution with µ = 0 and

σ2 = 2. Inset: Empirical cumulative fourth moment for the samples

considered.
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Recognition of stable distribution with Lévy index close to

2

The method is based on the empirical fourth moment and

Anderson-Darling and Jarque-Bera statistical tests.

The empirical fourth moment

C (k) =
1

k

k∑

i=1

(xk − x)4, k = 1, 2, ..., n

AD statistic, similar as KS , measure the distance between

empirical and theoretical (tested) CDFs.

For testing the Gaussianity we propose to use the standard

Jarque-Bera (JB) test. The JB statistic is defined as

J =
n

6

(
S2 +

(K − 3)2
4

)
. (2)
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Recognition of stable distribution with Lévy index close to

2

Figure: Schematic algorithm for recognition of Lévy stable

distribution with Lévy index close to 2.
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Recognition of stable distribution with Lévy index close to

2
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Figure: The empirical time series from plasma physics (left panel).

The right tail of the empirical PDFs and ECFMs for the examined

dataset (right panel). Data S2 are Gaussian, data S1 - stable with

α = 1.98.
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Discrimination algorithm - introduction

We consider the normalized sum of n continuous i.i.d. random

variables Xi , i = 1, . . . , n with CDF F (x) and PDF f (y) = F ′(y):

Yn =
1

Bn

n∑

i=1

(Xi − An).

When F has first and second moments m1 and m2, we set

Bn = n1/2 and An = m1 and by CLT, Yn converges to

N(0,m2).

If F has a third moment m3, then fn(y)− f (y) = O(n−1/2),

where fn(y) is the density function of Yn.

If m3 = 0, then the rate of convergence is o(n
−1/2).

if F does not have a third moment, but if F (x) = O(|x |α) as
x → −∞ and F (x) = 1− O(xα) as x → ∞ with 2 < α ≤ 3,
then fn(y)− f (y) = O(n−(α−2)/2).
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Discrimination algorithm - introduction

When F does not have both first and second moments, the

distribution of the Yn may still converge. A necessary and

sufficient condition for this is

F (x) =




(c1 + r1(x))|x |−α if x < 0,

(c2 + r2(x))|x |−α if x > 0,

with 0 < α ≤ 2, c1 and c2 positive constants, r1(x) → 0 as
x → −∞ and r2(x) → 0 as x → ∞. When this condition holds
and 0 < α < 2 we can set Bn = n1/α and by the Generalized

Central Limit Theorem the limit is a stable distribution.
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Discrimination algorithm

We consider two samples of observations of length N:

{x1, x2, . . . , xN} and {y1, y2, . . . , yN}.
1 We divide the dataset into non-overlapping consecutive blocks

of length K = 1, 2, . . . , 10. Next, we sum the values within

each block and obtain aggregated data of length [N/K ].

Finally, we estimate the index of stability α for the

constructed data via the regression method.
2 We plot the estimated index of stability with respect to

K = 1, 2, . . . , 10.

1 If the estimated values converge to 2, then the data are

light-tailed and belong to the domain of attraction of the

Gaussian law.

2 If the estimated values converge to α < 2, then the data are

heavy-tailed and belong to the domain of attraction of the

non-Gaussian stable law.
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Discrimination algorithm

One can enhance this procedure by calculating box plots for

the estimated values α. This is intended to help to access if

the differences in convergence are statistically justified. The

box plot provides a statistical information about the

distribution of the values.

But, how to create box plots from a single dataset? The idea

is to generate more samples from one sample (from its

empirical distribution function). This procedure is called

bootstrapping in statistics. The bootstrapping is done for the

whole dataset.
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Example. Gaussian vs. non-Gaussian stable with α close to

2
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Figure: Simulated samples from the Gaussian distribution with

µ = 0 and σ =
√
2 (top left panel) and the symmetric stable

distribution with α = 1.95 and σ = 1 (top right panel), and their

empirical tails (1-CDFs) in log-log scale (bottom left panel) and

PDFs (bottom right panel).
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Example. Gaussian vs. non-Gaussian stable with α close to

2
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Figure: Estimated α values for the Gaussian sample from the top

left panel of Fig. 4 (top panel) and for the symmetric non-Gaussian

stable sample from the top right panel of Fig. 4 (bottom panel).

Classic two-sample Kolmogorov-Smirnov test does not reject the

null hypothesis of common distributions, with p-value equal to

0.44.
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Example. Student’s t vs. stable
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Figure: Simulated samples from the Student’s t distribution with 4

degrees of freedom (top left panel) and stable distribution with

α = 1.85, σ = 0.77, β = 0.15, and µ = 0.01 (top right panel), and

their empirical tails in log-log scale (bottom left panel) and PDFs

(bottom right panel).
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Example. Student’s t vs. stable
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Figure: Estimated α values for the Student’s t sample from the top

left panel of Fig. 6 (top panel) and for the stable sample from the

top right panel of Fig. 6 (bottom panel).

The two-sample Kolmogorov-Smirnov test does not reject the null

hypothesis of common distributions, with p-value equal to 0.2.
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Discrimination algorithm
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Figure: Plasma data for the torus radial position r = 9.5: data1 (top

left panel), data2 (top right panel), and their empirical tails

(bottom left panel) and PDFs (bottom right panel).
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Discrimination algorithm
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Figure: Estimated α values for the data1 (top panel) and for the

data2 (bottom panel). The box plots were constructed from 100

bootstrap samples of length 2000. Data1 -stable with α = 1.94,

data 2 - Gaussian.
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Tools for anomalous diffusion recognition - TAMSD -

based method

Test for FBM based on the TAMSD

From the theory of quadratic forms for Gaussian vectors it is

known that (N − τ)MN(τ) for FBM has the generalized χ
2

distribution

(N − τ)MN(τ)
d
=

N−τ∑

j=1

σλj(H, τ)Uj ,

where Uj ’s are i.i.d. chi-squared with 1 degree of freedom

random variables and weights λj(H, τ) are the eigenvalues of

the matrix Σ̃(D,H, τ) responsible for the covariance of the

vector {BH(1+ τ)−BH(1),BH(2+ τ)−BH(2), . . . ,BH(N)−
BH(N − τ)}.
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Tools for anomalous diffusion recognition - TAMSD -

based method

If we know the exact distribution (and hence quantiles) of the

sum
∑N−τ

j=1 σλj(H, τ)Uj we are able to construct the

confidence interval

MN(τ) ∈
[
σQc/2

N − τ
,
σQ1−c/2

N − τ

]
(3)

with confidence level 1− c , where Qp is the quantile of order

p of generalized chi-squared distribution.

Such results are the basis for construction of a new rigorous

statistical test for FBM.

The null hypothesis (H0) is that the analyzed vector of

observations {X (1),X (2), ...,X (N)} forms a trajectory of
FBM with given σ and H parameters.
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Tools for anomalous diffusion recognition - TAMSD -

based method

We suggest to apply a two-sided test. In the two-sided case

we reject H0 hypothesis if the test statistic is extreme, either

larger than an upper critical value or smaller than a lower

critical value with a given significance level c (with probability

c it’s inside the critical region or equivalently outside the

acceptance region).

The acceptance region of the test is given by equation (3).

If MN(τ) falls into the acceptance region with given

significance level α, we say that the test does not reject the

FBM hypothesis with self-similarity index H, otherwise we

reject the null hypothesis of FBM with H. We assume σ is

known.
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Tools for anomalous diffusion recognition - TAMSD -

based method
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Figure: Quantiles of MN(τ) calculated on the basis of 500

simulations (thick dotted line) and mean TAMSD values

(calculated on the basis of 500 realizations) for FBM for different

H’s. On the top panel the reference value H = 0.4 and on the

bottom panel H = 0.6.
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Tools for anomalous diffusion recognition - TAMSD -

based method
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Figure: Power of the test calculated from the test statistic MN(2)

for FBM with H = 0.4 (top panel) and H = 0.6 (bottom panel) for

N = 200 and N = 1000.
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Tools for anomalous diffusion recognition - TAMSD -

based method
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Figure: Power of the test calculated from the test statistic MN(3)

for FBM with H = 0.4 (top panel) and H = 0.6 (bottom panel) for

N = 200 and N = 1000. For CTRW power is 1 for all values of Htest .
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Tools for anomalous diffusion recognition - TAMSD -

based method

The knowledge about exact distribution of TAMSD was a

starting point to calculate the exact distribution of estimator

anomalous diffusion exponent for FBM (β)

β̂
d
=

∑n
i=1 log(τi ) log

(
(N−1)

∑N−τi
j=1 λj (τi )Uj

(N−τi )
∑N−1

k=1 λk (1)Uk

)

∑n
i=1 log

2(τi )
,

Main properties of β̂ are calculated: it is asymptotically

unbiased, its variance tends to zero, it is consistent.

This can help to test if real data can by modeled by using

FBM.
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Tools for anomalous diffusion recognition - codifference

Correlation and spectral analysis represent the standard tools

to study interdependence in statistical data.

For the stochastic processes with heavy-tailed distributions

such that the variance diverges, these tools are inadequate.

Stochastic processes with diverging variance, like alpha-stable

Lévy motion, FLSM or Lévy flights, are ubiquitous in nature

and finance.

What is the measure of interdependence for the processes

with infinite variance?

The alternative measures of dependence are rarely discussed in

application-oriented literature.
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Tools for anomalous diffusion recognition - codifference

There are know few alternative measures of dependence.

We analyze codifference (CD).

It is based on the characteristic function of a given process,

therefore it can be used not only for alpha-stable processes.

The codifference in the Gaussian case reduces to the classical

covariance, so it can be treated as the natural extension of the

well-known measure.

It is easy to evaluate the empirical codifference which is based

on the empirical characteristic function of the analyzed data.

The codifference is closely related to the so-called dynamical

functional used to study ergodic properties of stochastic

processes.
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Tools for anomalous diffusion recognition - codifference

We introduce the codifference in terms of the characteristic

function. We recall, that the characteristic function always exists

for any real-valued random variable and determines the probability

distribution in a unique way. The characteristic function of random

variable X is defined as follows:

ΦX (k) =< exp(ikX ) >≡
∫ ∞

−∞
exp(iky)fX (y)dy , (4)

The codifference of two jointly SαS, 0 < α ≤ 2, random variables
X and Y is defined as follows:

CD(X ,Y ) = σα
X−Y − σα

X − σα
Y , (5)

where σX , σY and σX−Y denote, respectively the scale parameters

of X ,Y and X − Y .
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Tools for anomalous diffusion recognition - codifference

The codifference can be also defined in the language of the

characteristic function:

CD(X ,Y ) = ln(< exp{iX} >)+ln(< exp{−iY } >)−ln(< exp{i(X−Y )}
(6)

Thus, the definition given in Eq.(5) can be extended to a more

general class of random variables, and in the further analysis we

use the representation given in (6).
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Tools for anomalous diffusion recognition - codifference

The codifference possesses several useful properties:

it is always well-defined, since the definition of CD(X ,Y ) is

based on the characteristic functions of appropriate random

variables;

if the random variables are symmetric, then

CD(X ,Y ) = CD(Y ,X );

if X and Y are independent and jointly SαS, then

CD(X ,Y ) = 0 for 0 < α ≤ 2. On the other hand,
CD(X ,Y ) = 0 implies that X and Y are independent for

0 < α < 1 and in the Gaussian case α = 2. When 1 < α < 2,

CD(X ,Y ) = 0 does not imply that X and Y are independent.
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Tools for anomalous diffusion recognition - codifference

The above properties confirm that the codifference is an

appropriate mathematical tool for measuring the dependence

between alpha-stable random variables as well as random variables

from more general class of distributions (e.g., infinitely divisible).

In the literature one can also find the generalized codifference

which is defined as:

GCD(X ,Y ; θ1, θ2) =

ln(< exp{iθ1X} >)+ln(< exp{iθ2Y } >)−ln(< exp{i(θ1X+θ2Y )} >),

where θ1, θ2 ∈ R .
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Tools for anomalous diffusion recognition - codifference

For a stochastic process {X (t)}, the measure CD(X (t),X (s))

called autocodifference is defined as:

CD(X (t),X (s)) = ln(< exp{iX (t)} >)+

ln(< exp{−iX (s)} >)− ln(< exp{i(X (t)− X (s))} >).
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Tools for anomalous diffusion recognition - codifference

For Gaussian based processes

CD(X (t),X (s)) = −cov(X (t),X (s))

CD is especially important for infinite variance processes (the

covariance does not exists).

FBM

CD(BH(t),BH(s)) =
k(H)

2
(|t|2H + |s|2H − |t − s|2H).

FGN

CD(bH(t), bH(s)) =

k(H)

2
(|t − s + 1|2H − 2|t − s|2H + |t − s − 1|2H).
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Tools for anomalous diffusion recognition - codifference

FLSM

CD(LαH(t), L
α
H(s)) = k(H, α)

(
|t − s|αH − |t|αH − |s|αH

)
.

FLSN

For large t the autocodifference has a power law form:

If either 0 < α ≤ 1, 0 < H < 1 or 1 < α < 2,

1− 1

α(α−1) < H < 1, H 6= 1/α, then for t → ∞

CD(lαH(t), l
α
H(0)) ∼ CtαH−α.

If 1 < α < 2 and 0 < H < 1− 1

α(α−1) , then for t → ∞

CD(lαH(t), l
α
H(0)) ∼ DtH−1/α−1.
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How to estimate codifference from real data

We define an estimator of autocodifference in the form

ĈD(X (t),X (s)) = ln(φ̂(1, 0,X (t),X (s))) + ln(φ̂(0,−1,X (t),X (s)))

− ln(φ̂(1,−1,X (t),X (s))),

where φ̂(u, v ,X (t),X (s)) is an estimator of the characteristic

function:

φ̂(u, v ,X (t),X (s)) =< exp{i(uX (t) + vX (s))} > . (7)

If {xk , k = 1, ...,N} is realization of a stationary process {X (t)},
then the estimator of the characteristic function takes the form:

φ̂(u, v ,X (t),X (s)) =
1

N

N−|t−s|∑

k=1

exp(i(uxk+|t−s| + vxk)). (8)
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How to estimate codifference from real data

For a nonstationary process we are not able to estimate empirical

autocodifference by using only a single trajectory, therefore the

above estimator requires modification. Suppose, we have M

trajectories of a nonstationary process {X (t)}. Let us take a
sample {x tk , k = 1, ...,M} being a realization of a random variable
X (t), that is the values of the process {X (t)} taken at a fixed
time t, and a sample {x sk : k = 1, ...,M} composed from the values
of the process {X (t)} taken at a fixed time s. By construction,
both samples consist of independent identically distributed random

variables. Thus, in the nonstationary case the estimator of

characteristic function φ(u, v ,X (t),X (s)) is defined as:

φ̂(u, v ,X (t),X (s)) =
1

M

M∑

k=1

exp(i(ux tk + vx sk)). (9)
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How to estimate codifference from real data
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Figure: The trajectory of fractional Lévy noise lαH (t) with

parameters α = 1.95,H = 0.8 (top panel), together with the

estimator of autocodifference CD(lα,H(t), lα,H(0)) and fitted power

function tα(H−1) (bottom panel).
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Real data analysis - plasma data
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Figure: The examined time series of the ion saturation current

fluctuations (in mA) registered in the U-3M torsatron at the small

torus radial positions r = 9.9cm (top panel), and the estimator of

autocodifference (bottom panel).
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Real data analysis - plasma data

We propose to model the process by using white Lévy noise.

We confirm this assumption by applying the Anderson-Darling

goodness-of-fit test which indicates that the data come from

the Lévy stable distribution (p-value is equal to 0.88).

Estimated α̂ = 1.95.

On the basis of autocodifference we can also estimate the

scale parameter σ of the analyzed series. As the result we

obtain σ̂ = 1.05. We then compare this value with the

estimates of σ parameter made by regression and McCulloch

methods. The obtained values are σ̂ = 1.06 and σ̂ = 1.03,

respectively, which is in good agreement with the value

obtained from the autocodifference.
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Conclusions

Anomalous diffusion phenomena is visible in different data.

The classical anomalous diffusive models are: FBM, FLSM,

CTW.

It is important to recognize the theoretical model appropriate

for real data data.

The presented methods are useful in testing anomalous

diffusion behavior for real data.

In the literature one can find different approaches useful in

this problem.
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Thank you for your attention!
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