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Abstract
We revise the Lévy construction of Brownian motion as a simple though
rigorous approach to operate with various Gaussian processes. A Brownian
path is explicitly constructed as a linear combination of wavelet-based ‘geo-
metrical features’ at multiple length scales with random weights. Such a
wavelet representation gives a closed formula mapping of the unit interval
onto the functional space of Brownian paths. This formula elucidates many
classical results about Brownian motion (e.g., non-differentiability of its path),
providing an intuitive feeling for non-mathematicians. The illustrative char-
acter of the wavelet representation, along with the simple structure of the
underlying probability space, is different from the usual presentation of most
classical textbooks. Similar concepts are discussed for the Brownian bridge,
fractional Brownian motion, the Ornstein-Uhlenbeck process, Gaussian free
fields, and fractional Gaussian fields. Wavelet representations and dyadic
decompositions form the basis of many highly efficient numerical methods to
simulate Gaussian processes and fields, including Brownian motion and other
diffusive processes in confining domains.

Keywords: multiscale, wavelet, Brownian motion, Gaussian free field, fractal

(Some figures may appear in colour only in the online journal)

1. Introduction

Diffusion is a fundamental transport mechanism in nature and industry, with applications
ranging from physics to biology, chemistry, engineering, and economics. This process has
attracted much attention during the last decades, particularly in statistical and condensed
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matter physics: diffusion–reaction processes, transport in porous media and biological tissues,
trapping in heterogeneous systems, kinetic and aggregation phenomena like DLA, to name a
few fields. From an intuitive point of view, Brownian motion (also known as the Wiener
process) is often considered as a continuous limit of lattice random walks. However, a more
rigorous background is needed to answer subtle questions. In mathematical textbooks,
Brownian motion is defined as an almost surely continuous process with independent nor-
mally distributed increments [1–6]. The deceptive simplicity of this definition relies on the
notion of almost surely that, in turn, requires a sophisticated formalism of Wiener measures in
the space of continuous functions, filtrations, sigma-algebra, etc. Although this branch of
mathematics is well developed, it is rather difficult for non-mathematicians, that is, the
majority of scientists dealing with diffusion in their every-day research.

In this review, we discuss a different, but still rigorous, approach to define and operate
with Brownian motion as suggested by P. Lévy [7]. We construct from scratch a simple and
intuitively appealing representation of this process that gives a closed formula mapping of the
unit interval onto the functional space of Brownian paths. In this framework, sampling a
Brownian path is nothing other than picking up uniformly a point from the unit interval.
Figuratively speaking, Brownian motion is constructed here by adding random wavelet-based
geometrical features at multiple length scales. The explicit formula elucidates many classical
results about Brownian motion (e.g., the non-differentiability of its path). The illustrative
character of the wavelet representation, along with the simple structure of the underlying
probability space, is different from the usual presentation of most classical textbooks.

Among various amazing properties, Brownian motion is known to have a self-similar
structure: when a fragment of its path is magnified, it ‘looks’ like the whole path. In other
words, any fragment obeys the same probability law as the whole path. As a consequence,
Brownian paths exhibit their features at an (infinitely) broad range of length scales. As a
matter of fact, multiscale geometrical structures are ubiquitous in nature and materials sci-
ences [8]. For instance, respiratory and cardiovascular systems start from large conduits
(trachea and artery) that are then split into thinner and thinner channels, up to a size of a few
hundred microns for the alveoli and several microns for the smallest capillaries [9]. Another
example is a high-performance concrete which is made with grains of different sizes (from
centimeters to microns), smaller grains filling empty spaces between larger ones. The adaptive
description of such self-similar structures needs to capture their mechanical or transport
properties at different length scales and thus relies on intrinsically multiscale functions. We
illustrate this idea by constructing Brownian motion and a Brownian bridge using wavelets, a
family of functions with compact support and well defined scaling [10–12]. Wavelets appear
as the natural mathematical language to describe and analyze multiscale structures, from
heterogeneous rocks to biological tissues [13–15]. The wavelet construction of Brownian
motion naturally extends to fractional Brownian motion and other Gaussian processes and
fields, allowing one to efficiently simulate, for instance, turbulent diffusion with high Rey-
nolds numbers or financial markets. In particular, we discuss the Gaussian (or massless) free
field and fractional Gaussian fields which appear as basic models in different areas of physics,
from astrophysics (cosmic microwave background) to critical phenomena, quantum physics,
and turbulence [16–19]. Written in a spectral form in one dimension, the Brownian bridge and
the fractional Gaussian field look very similar, one of them being the fractional derivative of
the other. Putting together these two processes reveals deep relations between them, and this
correspondence carries over to higher dimensions.

Most importantly, the wavelet representation is a starting point for a number of highly
efficient numerical methods to simulate various Gaussian processes and fields. Though
wavelet representations and the related numerical methods are all known, they are not easily
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available in a single source. Indeed the totality of these methods seems to be poorly under-
stood, even amongst specialists. The purpose of this review is to present a unified and
intuitive framework that is based on elementary mathematical structures like, for example,
dyadic subdivision or a wavelet tree. We also discuss some simple number-theoretic shortcuts
and consequent numerical algorithms. Finally, we describe fast simulations of restricted
diffusion in confined domains, where one of the difficulties is the ability to quickly access the
local geometry near the boundary. These techniques can be applied for studying Brownian
motion and related processes or solving partial differential equations in complex multiscale
media.

We hope that this didactic review will provoke interesting discussions amongst the
experts and will help in a better understanding of both the theory and implementation of
Brownian motion and other Gaussian processes and fields for a much broader community of
their practical ‘users’, namely, physicists, biologists, chemists, engineers, and economists.

2. Brownian motion

In this section, we derive a wavelet representation of Brownian motion in a simple explicit
way, allowing one to gain an intuitive feeling for this constructive approach.

2.1. Physical view: upscaling and downscaling

In order to illustrate the basic idea of a wavelet representation, we revisit the single particle
tracking experiment by R. Brown who looked through a microscope at stochastic trajectories
(now known as Brownian paths) of pollens of Clarkia (primrose family) [20]. The first
examples of such trajectories for mastic grains in water were reported by J. Perrin [21, 22].
The essence of the wavelet representation can be recognized in his description of these
trajectories (figure 1) that were recorded at 30-second intervals [22]: ‘Ils ne donnent qu’une
idée très affaiblie du prodigieux enchevêtrement de la trajectoire réelle. Si, en effet, on faisait
des pointés de seconde en seconde, chacun de ces segments rectilignes se trouverait remplacé

Figure 1. Three random trajectories of small mastic grains in water recorded by J.
Perrin at 30-second intervals (reproduced from [22]).
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par un contour polygonal de 30 côtés relativement aussi compliqué que le dessin ici
reproduit, et ainsi de suite.’4

Following this idea, let us record the positions of a particle (e.g., pollen or grain) at
successive time moments with a selected time resolution δ. Each particle submerged in water
is permanently ‘bombarded’ by water molecules. Since the number of surrounding water
molecules is very large and their tiny actions are mostly uncorrelated, net microscopic dis-
placements of the particle cannot be considered deterministicly as in classical mechanics, but
random. Since the interaction of water molecules between them is very rapid as compared to
the macroscopic resolution scale, there is no memory effect in their action on the heavy
particle. As a consequence, the microscopic displacements of the particle are (almost) inde-
pendent and have a finite variance 2s . The macroscopic displacement during the resolution
time δ is the sum of a large number N of these displacements with zero mean (no coherent
flow). Although the average displacement is also zero, the stochastic fluctuations around this
value are of the order of Ns . Moreover, the central limit theorem gives us a precise
probabilistic description of the fluctuations, resulting in a normal (or Gaussian) distribution of
macroscopic displacements of the particle [23]. It is worth stressing that the Gaussian char-
acter of the macroscopic displacements appears without any specific knowledge about the
microscopic interactions. The only important information at the microscopic level is the
stationary, uncorrelated character of the interaction, and the finite variance (if one of these
conditions is missing, the resulting macroscopic process may exhibit anomalous behavior, see
[24–26] and references therein). This is known as coarsening or upscaling: complex inter-
actions and the specific features of the underlying microscopic dynamics are averaged out on
macroscopic scales. This is the reason why Brownian motion (or diffusion in general) is so
ubiquitous in nature and science. Once we know that the microscopic details are irrelevant
(under the conditions mentioned above), we can extend the Gaussian behavior from mac-
roscopic scale, where it has been established, to microscopic scale. This procedure can be
called downscaling, when we explicitly and purposefully transpose the universal macroscopic
behavior even onto smaller scales. The resulting model of microscopic dynamics exhibits
Gaussian features at all scales. While the true dynamics and its Gaussian model can be
completely different at microscopic scale, they become identical at macroscopic scale.

Knowing that a particle moves continuously, we connect its successive positions sepa-
rated by time δ by a continuous line. Since the experimental setup is limited to the selected
time scale δ, nothing can be said about the trajectory of the particle in between two data
points. In other words, the only condition for the trajectory to pass through the recorded
points leaves us a variety of choices for the shape of the connecting continuous line. The
common choice is connecting the successive positions by linear segments. As one will see
below, this choice fixes a particular wavelet representation, Haar wavelets. We shall show that
other wavelets, corresponding to other choices of continuous connections, are also useful.

When the magnification and time resolution of the experimental setup are increased,
smaller details of the particle’s trajectory appear, allowing one to refine the above piecewise
linear approximation. Repeating this procedure, in theory up to infinity, one recovers all
geometrical features and thus constructs the whole Brownian path. In what follows, we put
this schematic description into a more rigorous mathematical frame.

4
‘They provide only a very rough idea of the prodigious intricacy of the real trajectory. If one got points every

second, each of the straight segments would be replaced by a polygonal contour of 30 sides having approximately the
same complexity as the current plot, and so forth’ (translated by authors).
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2.2. Mathematical view: multiscale construction

We start with the position ‘records’ at every unit time: t 1, 2, 3,= ¼ (e.g., every second)
along one coordinate (two- and higher dimensional Brownian motion is then obtained by
taking d independent copies of the one-dimensional process). We focus on the time interval
between 0 and 1, the construction being applicable to any interval ℓ ℓ, 1[ ]+ . For con-
venience, Brownian motion is started at t=0 from the origin: B 0 0( ) = . By definition (or as
a consequence of the central limit theorem if one relies on the above physical reasoning), the
position at time t=1, B(1), is a random variable a0 distributed according to the standard
normal (or Gaussian) law, 0, 1( ) , with mean zero and variance one

a x x x x, d d
e

2
. 1

x

0

22

{ }( ) ( )
p

Î + =
-

In physics, the variance 2s is related to the diffusion coefficient, D 22 ( )s t= , where τ is the
one step duration; here, 1s t= = yielding D 1 2= throughout the review. A linear
approximation at this time scale ( 1d = ) is simply

B t a t,0 0( ) =

that connects the positions B 0 0( ) = and B a1 0( ) = by a linear segment.
If the time resolution is doubled, a new, intermediate position b B 1 2( )¢ = can now be

seen (figure 2). The random variable b¢ is conditioned by the fact that Brownian motion
passes through the points 0, 0( ) and a1, 0( ), the value of a0 being already known. b¢ is
distributed according to the normal law with mean value B B a0 1 21

2 0( ( ) ( ))+ = and var-

iance 1/4 (see appendix A). In other words, one can write b a a2 20 00¢ = + , where the new
random variable a 0, 100 ( )Î (i.e., distributed according to the standard normal law (1)) is
independent of B 0 0( ) = and B a1 0( ) = .

The linear approximation at the time scale 1 2d = connects three successive points
0, 0( ), b1 2,( )¢ and a1, 0( ) by two linear segments:

B t
tb t

t a b b a t

2 , 0
1

2
,

2 2 ,
1

2
1.

21

0 0( ) ( )
( ) ( )

⎧
⎨
⎪⎪

⎩
⎪⎪

 

 
=

¢

- ¢ + ¢ -

The shape of this approximation looks like a skewed tent (figure 2) that can be represented as
the sum of a linear shift and a ‘symmetric tent’ function:

Figure 2. Iterative construction of Brownian motion: (a) linear approximation B t0 ( ) by
a segment at scale 20; (b) linear approximation B t1( ) by two segments at scale 2 1- . The
latter ‘skewed tent’ can be uniquely represented as the sum of a ‘symmetric tent’ and a
linear shift.
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B t a t b a h t a t a h t2 , 31 0 0 00 0 00 00( )( ) ( ) ( ) ( )= + ¢ - = +

where the ‘symmetric tent’ function h t00 ( ) is

h t

t t

t t

, 0
1

2
,

1 ,
1

2
1,

0, otherwise.

400 ( ) ( )

⎧

⎨
⎪⎪

⎩
⎪⎪

 

 
=

-

The decomposition (3) into the linear function t and the tent function h t00 ( ) is unique. The
new approximation B t1( ) is obtained from the previous one, B t0 ( ), by adding the new term
representing a smaller geometrical detail.

The same concept is applicable at every scale. Assume that an approximation Bn(t) of
Brownian motion is already constructed on the time scale 2 nd = - , i.e., the positions
b B tk k( )= are known at successive times t k2k

n= - , k ranging from 0 to 2n. The approximate
Brownian path is a piecewise linear function passing successively through these points.

At the next time scale 2 n 1- - , a new, intermediate position b B tk k( )¢ = ¢ of Brownian
motion at time t t t k 2k k k

n1

2 1
1

2
( ) ( )¢ = + = ++

- should be determined for each k. As pre-

viously, the random variable bk¢ is conditioned by the fact that Brownian motion is known to
pass through the points t b,k k( ) and t b,k k1 1( )+ + . It is again distributed according to the normal
law, with mean value b bk k

1

2 1( )+ + and variance 2 4n- . In other words, one can write bk¢ as

b b b a
1

2
2 , 5k k k

n
nk1

2 1( ) ( )¢ = + ++
- -

where the new normal random variable a 0, 1nk ( )Î is independent of the other positions.
The linear segment between t b,k k( ) and t b,k k1 1( )+ + is then replaced by two linear segments
connecting the three successive points t b,k k( ), t b,k k( )¢ ¢ , and t b,k k1 1( )+ + . This is a new ‘skewed
tent’ function which can be uniquely decomposed as the sum of the previous linear segment
and a symmetric tent function hnk(t) with the weight ank, where

h t h t k2 2 6nk
n n2

00 ( )( ) ( )= --

is a rescaled symmetric tent function on the interval I k k2 , 1 2nk
n n[ ( ) )= +- - (see

figure 3(a)). We stress again that the new approximation is obtained from the previous one
by simply adding the tent function hnk(t), representing a smaller geometrical detail at the new
scale 2 n 1- - , weighted by a normally distributed coefficient ank which is independent of the
previously determined positions.

Figure 3. Tent function hnk(t) (a) and the related Haar function Hnk(t) (b), both having
the support on the interval I k k2 , 1 2nk

n n[ ( ) )= +- - .
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This construction is applicable to all linear segments (all k) at the given scale n, and it is
valid for any scale. Repeating this procedure from the scale 20 up to infinity, one obtains the
Lévy–Ciesielski representation of Brownian motion on the unit interval:

B t a t a h t , 7
n k

nk nk0
0 0

2 1n

( ) ( ) ( )å å= +
=

¥

=

-

where all weights a0 and ank are independent 0, 1( ) random variables. As discussed in
appendix B, all these Gaussian weights can be related to a single random uniform number that
provides a natural parameterization of Brownian paths.

The dyadic structure of the intervals implies that for any n Î , there exists only one
interval Ink of length 2 n- containing a point t : k t k2 1 2n n( ) < +- - . The index k is simply
the integer part of t2n : k t2n⌊ ⌋= (i.e., the largest integer that does not exceed t2n ). As a
consequence, the convergence in the above formula is very rapid. In fact, if one needs to
obtain the value of the function B(t) with a desired precision e, it is sufficient to calculate the
first log 12( )e terms, xlog2 being the logarithm of x with the base 2.

Subtracting the linear term a t0 from equation (7) yields the Haar wavelet representation
of a Brownian bridge Bt

ˆ on the unit interval, i.e., Brownian motion conditioned to return to 0
at time t= 1 : B B tBt t 1

ˆ = - (it can also be defined as a Gaussian process with mean zero and
covariance B B t s tsmin ,t s{ ˆ ˆ } { } = - ).

2.3. Dyadic decomposition and interval subdivision

In the wavelet representation (7), the first sum is carried over all scales n, while the second
sum covers all 2n subintervals Ink at the scale n. In some cases, it is convenient to enumerate
all the dyadic subintervals Ink using a single index,

m k2 , 8n ( )= +

as shown in figure 4. Since k ranges from 0 to 2n 1- , the new index m uniquely identifies the
interval Ink. In particular, one easily retrieves the pair (n, k) from m as

n m k mlog , 2 .n
2

⎢⎣ ⎥⎦= = -

Figure 4. Enumeration of the dyadic subintervals using a single index m.
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Using the notation

a
a m
a m

h t
t m
h t m

, 0,
, 0,

, 0,
, 0,m

nk
m

nk

0˜ ˜ ( ) ( )
⎧⎨⎩

⎧⎨⎩=
=
>

=
=
>

we can write equation (7) in a more compact form

B t a h t . 9
m

m m
0

( ) ˜ ˜ ( ) ( )å=
=

¥

As a result, the Brownian trajectory is decomposed into a sum of tent functions (plus a linear
term) with random independent identically distributed Gaussian weights. As shown in appendix
B, all these weights can be determined from a single uniformly distributed random variable.

2.4. Haar wavelets

In equations (7) or (9), Brownian motion is decomposed into a sum of a linear function and
tent functions. Figure 3(a) illustrates that any tent function hnk(t) can actually be represented
as the integral of a piecewise-constant function

h t t H td , 10nk

t

nk
0

( )( ) ( )ò= ¢ ¢

where Hnk(t) is called the Haar function and is defined to be 0 on the complement of Ink and to
take values 2n 2 and 2n 2- on its left and right subintervals, respectively (figure 3(b)). In fact,
all Haar functions are obtained by translations and dilations of a single ‘mother’ function

t1,1( )f :

t

t

t

1, 0
1

2
,

1, 1,

0, otherwise.

111,1
1
2

( ) ( )

⎧
⎨
⎪⎪

⎩
⎪⎪




f =

<

- <

As illustrated in figure 5, one has

H t t k2 2 . 12nk
n n2 1,1( )( ) ( )f= -

Figure 5. Haar wavelets Hnk(t) are obtained by dilations and translations of the mother
function t H t1,1

00( ) ( )f = (shown on the left).
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As previously, it is convenient to use the single index m to denote different Haar functions
(completed by a constant):

H t
m

H t m
1, 0,

, 0.m
nk

˜ ( ) ( )
⎧⎨⎩=

=
>

Equation (9) yields the following representation for Brownian motion

B t W td , 13
t

0
( )( ) ( )ò= ¢

where dW(t) denotes the Gaussian white noise which is defined here through Haar wavelet
decomposition:

W t a H td . 14
m

m m
0

( ) ˜ ˜ ( ) ( )å=
=

¥

It is easy to check that the Haar functions together with a constant form an orthonormal
basis in the space L 0, 12 ([ ]) of measurable and square integrable functions that is

t H t H td .m m m m
0

1

,˜ ( ) ˜ ( )ò d=¢ ¢

Moreover, this basis is known to be complete in L 0, 12 ([ ]). This means that any function
from L 0, 12 ([ ]) can be decomposed into a linear combination of Haar functions (and a
constant). The use of Haar wavelets for constructing stochastic processes was first proposed
by Ciesielski [27].

2.5. General representation

The wavelet representation (14) can be extended to any complete orthonormal basis
tj j 1,2,{ ( )}y = ¼ of L 0, 12 ([ ]). Although we started from the Haar basis, one can switch from

one basis to another depending on the problem. In particular, this flexibility will help us to
relate Brownian motion to a one-dimensional fractional Gaussian field with logarithmic
corrections.

If the orthonormal basis tj{ ( )}y is complete, one can decompose any function H tm˜ ( ) into
a linear combination of tj ( )y :

H t c t ,m
j

m j j
1

,˜ ( ) ( )å y=
=

¥

where the coefficients cm j, satisfy the orthogonality relations

c j1 1, 2, 3, . 15
m

m j
0

,
2 ( ) ( )å = = ¼

=

¥

Substitution of this decomposition into equation (14) gives

W t a c t a td , 16
m

m
j

m j j
j

j j
0 1

,
1

( ) ˜ ( ) ˆ ( ) ( )å å åy y= =
=

¥

=

¥

=

¥

with new random weights

a a c .j
m

m m j
0

,ˆ ˜å=
=

¥

The sum of independent Gaussian variables is a Gaussian variable, and its variance is the sum
of the squared coefficients cm j,

2 , which is equal to 1 according to equation (15). In other words,
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a 0, 1jˆ ( )Î . Moreover, the new random variables ajˆ are independent due to the
orthogonality of the functions tj ( )y . We have thus shown that the Gaussian white noise
can be decomposed into a linear combination with independent Gaussian weights in an
arbitrary complete orthonormal basis of L 0, 12 ([ ]).

The completeness of the basis tj{ ( )}y yields the usual covariance of the Gaussian white
noise

W t W t t t a a t t t td d ,
j j

j j j j
j

j j1 2
, 1

1 2
1

1 2 1 2

1 2

1 2 1 2{ }{ }( ) ( ) ( ) ( ) ˆ ˆ ( ) ( ) ( ) å åy y y y d= = = -
=

¥

=

¥

where δ is the Dirac distribution (or ‘δ-function’).
Substituting equation (16) into equation (13), one gets a general representation of

Brownian motion

B t a t td . 17
j

j

t

j
1 0

( )( ) ˆ ( )òå y= ¢ ¢
=

¥

For instance, taking the Fourier basis on the unit interval,

t j t j2 cos 1 2 , 1, 2, 3, ,j ( ) ( ( ) ) ( )y p= - = ¼

one gets the Karhunen–Loève expansion of Brownian motion [28]:

B t a
j t

j
2

sin
. 18

j
j

1

1
2

1
2

( )( )
( )( ) ˆ ( )å
p

p
=

-

-=

¥

A different Fourier basis on the unit interval,

t
jt j

j
2 cos , 0 ,

1, 0 ,j ( ) ( ) ( )
( )

⎧⎨⎩y p= >
=

yields another expansion

B t a t a
jt

j
2

sin
, 19

j
j0

1

( ) ˆ ˆ ( ) ( )å
p
p

= +
=

¥

where the second term is the Karhunen–Loève expansion of the Brownian bridge B tˆ ( ). In
general, Karhunen–Loève expansions can be constructed for a broad class of centered square-
integrable stochastic processes with continuous covariance functions [28].

2.6. Basic properties of Brownian motion

The Haar wavelet decomposition (7) and the general representation (17) have been explicitly
constructed in order to reproduce the basic properties of Brownian motion. Alternatively, one
could first postulate such a representation as a definition of Brownian motion and then check
that the basic properties are fulfilled. To illustrate this point, we check several properties.
Since this section is a little technical, it can be skipped at first reading.

(i) Brownian motion is a Gaussian process with independent increments. First, since B(t)
is a linear combination (17) of Gaussian variables, it is Gaussian. Let t t1 2< and t t3 4< define
two increments, B t B t2 1( ) ( )- and B t B t4 3( ) ( )- . If t t2 3 (i.e., the increments do not
‘overlay’), they are independent (a similar statement holds if t t4 1 by symmetry). To prove
this statement, we decompose the unit interval as
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t t t t t t t t0, 1 0, , , , , 1 , 201 1 2 2 3 3 4 4[ ]) ([ ] [ ] ( ) [ ] ( )È È È È=

(if one of the subintervals t0, 1[ ), t t,2 3( ) or t , 14( ] is empty, it is ignored). The basis tj{ ( )}y in
equation (17) can be chosen as a direct product of the Haar eigenbases on each subinterval.
For instance, m

t t
m

,
0,1,2,

1 2{ }[ ]y = ¼ is the Haar basis of L t t,2
1 2([ ]) which is extended to

t t0, 1 ,1 2[ ]⧹[ ] by zeros. In this particular representation, one has

B t B t t a t

t a t a t t

d

d . 21

t

t

j
j j

t

t

m
m

t t
m
t t t t

2 1
1

0

, ,
0

,
2 1
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In the second equality, the Haar functions from other subintervals (except t t,1 2[ ]) vanish by
construction. In turn, all the Haar functions tm

t t,1 2 ( )[ ]y ¢ on t t,1 2[ ] (with m 0> ) vanish after
integration due to their orthogonality to a constant. The only remaining contribution is the
constant term which has the unit L t t,2

1 2([ ]) norm: t t tt t
0

,
2 1

1 21 2 ( ) ( )[ ]y = - - . Integrating this
term, one gets the right-hand side of equation (21) which shows that the increment
B t B t2 1( ) ( )- is a Gaussian variable with mean zero and variance t t2 1- , as expected. The
same representation for t t,3 4[ ] yields
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and the random weights a t t
0

,1 2ˆ [ ] and a t t
0

,3 4ˆ [ ] are independent by construction. As a consequence,
the increments B t B t2 1( ) ( )- and B t B t4 3( ) ( )- are independent.

(ii) The mean and covariance of Brownian motion are:

B t B t B t t t0, min , . 231 2 1 2{ }{ ( )} ( ) ( ) { } ( ) = =

The first statement is obvious from equation (17) given that all weights have mean zero. To
prove the second statement, one assumes t t2 1> and considers

B t B t B t B B t B t B t B0 0 .1 2 1 2 1 1
2{ }{ }[ ][ ] [ ]{ }( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )  = - - + -

The first term vanishes due to the independence of increments (and B 0 0( ) = ), while the
second term is equal to t1 according to equation (21).

(iii) Brownian motion is continuous but nowhere differentiable almost surely. The proof
relies on the simple fact that the Gaussian weights ank cannot be too large, e.g., the probability
that a nnk > decays extremely fast (as e n 22- for large enough n). In turn, the norm of the
tent functions decreases exponentially which ensures the continuity of Brownian motion and
the convergence of a partial sum approximation in equation (7) or similar expressions to
Brownian motion. Moreover, the remainder of this approximation decreases exponentially
fast with the truncated scale N (for technical details, see appendix C).

2.7. Alpert–Rokhlin wavelets

As we mentioned in section 2.1, taking a particular orthonormal basis is equivalent to
choosing a way to connect successive positions of Brownian motion at a finite scale δ. The
Haar wavelets and the resulting tent functions present the simplest way of connection by
linear segments. Such a piecewise linear approximation of Brownian motion introduces
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singularities at the connection nodes (corners). For some problems, it is convenient to deal
with a smooth approximation of Brownian motion at finite scales (although a true Brownian
trajectory, the limiting curve, remains nowhere differentiable). For this purpose, one can use
the Alpert–Rokhlin multiwavelet basis [29–32]. This basis is generated by a set of q functions

t t, ,q q q,1 ,( ) ( )f f¼ which are supported on the interval 0, 1[ ], are piecewise polynomials of
degree q 1- on 0, 1 2[ ] and on 1 2, 1[ ], and satisfy the moment cancellation conditions

t t t
k q
p q

d 0,
0, 1, , 1,
1, 2, , . 24

k q p

0

1
, ( )

( )ò f =
= ¼ -
= ¼

These mother functions generate the Alpert–Rokhkin multiwavelets of order q by translations
and dilations:

t t k
n
k

2 2
0, 1, 2, ,
0, 1, 2, 2 1.nk

q p n q p n
n

, 2 , ( )( )f f= - = ¼
= ¼ -

-

The set of functions tnk
q p,{ ( )}f , completed by the set of orthonormal polynomials of order m q< ,

forms a complete basis of L 0, 12 ([ ]). This completion is necessary because all mother functions
tq p, ( )f (and thus all tnk

q p, ( )f ) are orthogonal by construction to all polynomials of order m q< .
Similarly, the Haar wavelets were completed by a constant function.

When q=1, there is only one mother function t1,1( )f defined by equation (11) which
generates the Haar wavelets by translations and dilations. For q=2, there are two mother
functions (figure 6), satisfying the moment cancellation conditions (24):
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Higher-order mother functions (with q 2> ) can be constructed through an orthogonalization
procedure (see [29, 33] for details and examples).

Note that the wavelet representation of Brownian motion involves the integral of
wavelets

h t t td . 25q p
t

q p
00

,

0

, ( )( ) ( )ò f= ¢ ¢

For instance, one gets for q=2 (figure 6)
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while the other functions h tnk
2,1( ) and h tnk

2,2 ( ) are obtained by dilations and translations. As a
consequence, Brownian motion gets a closed formula in terms of the Alpert–Rohklin
multiwavelets of order 2:

B t a t a t t a h t3 1 , 26
n k p

nk
p

nk
p

0 1
0 0

2 1

1

2
2,

n

( ) ( ) ( ) ( )( )å å å= + - +
=

¥

=

-

=

where all weights a0, a1, ank
p( ) are independent 0, 1( ) variables, and the second term is the

integral of the linear basis function t3 2 1( )- . An extension of this representation to the
Alpert–Rohklin multiwavelet basis of order q is straightforward.

2.8. Numerical implementation

The wavelet representation of Brownian motion can be easily implemented in practice. To
carry out computations with a (fixed) desired precision e, it is sufficient to truncate the first
sum in equation (7) or equivalent relations up to N log 12( )⎢⎣ ⎥⎦e= , because higher-order

Figure 6. Two mother functions for Alpert–Rokhlin first-order multiwavelets (on the
left) and their integrals h tq p

00
, ( ) (on the right). The use of these wavelets corresponds to

another type of connection (not by linear segments) between successive points of
Brownian motion in the refinement procedure. For comparison, the tent function h t00 ( )
is shown in the last plot by a dashed line. Note that horizontal and vertical scales are not
matched here.
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terms describe geometrical details at smaller scales. The remainder of this series can be
estimated using equation (C.4) (see appendix C). For Haar wavelets, such a truncation
qualitatively corresponds to an approximation of Brownian motion by a broken line com-
posed of linear segments of length close to e, while the Alpert–Rokhlin wavelets yield
smoother approximations (figure 7). This is a fascinating feature of wavelets that allows one
to capture geometrical details at different scales.

A realization of a Brownian path is completely determined by a set of random coeffi-
cients ank (or am˜ ). In appendix B, we discussed an explicit scheme to generate all these
coefficients from a randomly chosen number from the unit interval. In practice, one can use
standard routines to generate pseudo-random normally distributed weights ank (or am˜ ). The
computation of tent functions hnk(t) can be easily implemented. Consequently, the compu-
tation of B(t) at any time t requires only log 12( )e operations, each of them consisting of
finding hnk(t), multiplying it by ank, and summing their contributions.

It is instructive to compare the wavelet approach to conventional techniques. We con-
sider the computation of all positions b B tk k( )= at equidistant times t k2k

N= -

(k 0, , 2N= ¼ ) at some scale 2 Ne = - . In a classical scheme, Brownian motion is modeled
by a sequence of small random jumps

b b b a k0, 2 0, 1 ,..., 2 1 , 27k k
N

k
N

0 1
2 ( ) ( )= = + ¢ = -+

-

with 2N independent normally distributed random variables a 0, 1k ( )¢ Î . Similar
computation relying on wavelet representations requires one random variable for a linear
shift and 2k random variables at each scale k, k ranging from 0 to N 1- . The total number is
then 1 1 2 4 ... 2 2N N1( )+ + + + + =- . It is not surprising that both schemes require the
same degree of randomness to represent a Brownian path at a chosen scale. The wavelet

Figure 7. A random Brownian path at scales n=3 (dashed line) and n=10 (solid
line) with Haar wavelets (a) and Alpert–Rohkin wavelets with q=2 (b).
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representation does not reduce the complexity or randomness, but re-organizes the data into a
hierarchical structure to facilitate their use. For instance, formula (7) accesses approximate
positions of Brownian motion at any time point t, not necessarily tk. In a classical scheme, one
could use a linear interpolation between two neighboring points to get the same result. Again,
the wavelets do not bring new features which are not available using conventional techniques,
but provide another, structured and efficient, representation.

Although we focused on Brownian motion on the unit interval, the above construction
can be extended for any positive t either by rescaling the interval, or by piecing together
independent copies Bi of Brownian motion on successive intervals [2]:

B t
B t t
B B t t
B B B t t

, 0 1 ,
1 1 , 1 2 ,
1 1 2 , 2 3 ,

0

0 1

0 1 2

( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

⎧
⎨⎪
⎩⎪





=
<

+ - <
+ + - < ¼

Finally, an extension to isotropic Brownian motion in d is obtained by taking d independent
samples of one-dimensional Brownian motion.

3. Beyond Brownian motion

3.1. Fractional Brownian motion

A similar technique can be applied to construct and study fractional Brownian motion which
is also known as a random fractal velocity field [34, 35]. For instance, a random fractal
velocity field with the Hurst exponent H 1 3= (defined below) corresponds to the Kol-
mogorov spectrum in high Reynolds number turbulence [8, 36–38]. Fractional Brownian
motion, as a Gaussian stochastic process with long-range correlation, has found numerous
applications in different fields, ranging from transport phenomena in porous media [33, 39–
42] to financial markets [43].

P. Lévy proposed the first extension of equation (13) by using the Riemann–Liouville
fractional integration which can be thought of as a moving average of Gaussian white noise
[44]
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- -

where H0 1< < is the Hurst exponent, and H 1

2( )G + is the normalization factor ( z( )G
being the Gamma function). Mandelbrot and van Ness discussed the limitations of this
definition (e.g., its strong emphasis on the origin) and proposed to use the Weyl fractional
integral that yields [35]
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for t 0> (and similar for t 0< ). The last representation can also be written as [45]
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where
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and F a b c z, ; ;2 1( ) is the hypergeometric function. The ordinary Brownian motion is retrieved
at H 1 2= for all cases.

Using the general representation (16) for Gaussian white noise, one obtains

B t a s K t s sd , . 32H
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H j
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The integrals can be evaluated using an appropriate basis tj{ ( )}y . Moreover, the moment
cancellation property (24) for the Alpert–Rokhlin multiwavelets with a large enough order q
guarantees that the integrals in equation (32) are highly localized, yielding a rapid
convergence of the above sum. This convergence is a key point for efficient numerical
algorithms for simulation of fractional Brownian motion (see [33, 39–41]). Among other
numerical methods, we mention alternative wavelet representations [46–49] (e.g., the method
by Arby and Sellan is implemented in the Matlab function ‘wfmb’), circulant embedding of
the covariance matrix [50–52], and the random midpoint displacement method [53] which is
often used in computer graphics to generate random two-dimensional landscapes.

In general, the kernel K t s,H ( ) can be replaced by any convenient kernel to extend this
approach to various Gaussian processes. For instance, setting K t s, e t s( ) ( )= q- - yields the
Ornstein–Uhlenbeck process [54, 55]. Similarly, one can deal with various stochastic
dynamics generated by Langevin equations [56] while appropriate wavelet decompositions
can be constructed for a general class of elliptic Gaussian processes [57].

3.2. Gaussian free field and its extensions

Brownian motion is the integral of Gaussian white noise which, in turn, is obtained as a linear
combination of orthonormal functions j{ }y forming a complete basis of the space L 0, 12 ([ ]),
with standard Gaussian weights. This construction can be extended to any separable Hilbert
space H. However, whatever the functional space H is taken, a linear combination of its
orthonormal basis functions with standard Gaussian weights does not belong to this space (the
argument is the same as for the L2 space, the norm of such a linear combination being
infinite). In particular, Gaussian white noise is not a function but a distribution. In order to
construct reasonable extensions of Gaussian white noise with desired properties, one needs to
carefully choose the Hilbert space H. In this section, we briefly discuss two such extensions:
the Gaussian free field (GFF) [58] and the fractional Gaussian field (FGF) with logarithmic
correlations [59, 60]. The GFF appears as the basic description of massless non-interacting
particles in field theories. Both the GFF and FGF constitute important models in different
areas of physics, from astrophysics (describing stochastic anisotropy in the cosmic microwave
background) to critical phenomena, quantum physics, and turbulence [16–19]. While the
‘sequence’ of random variables of Brownian motion B(t) was naturally parameterized by
‘time’ t (a real number from the unit interval or, in general, from ), random variables of a
field can in general be parameterized by points from a Euclidean domain, a manifold, or a
graph. For instance, one can speak about random surfaces which can model landscapes (e.g.,
mountains) or the ocean’s water surface, in which the height is parameterized by two coor-
dinates. The geometrical structure of ‘smooth’ random surfaces has been thoroughly inves-
tigated [61–63], especially for Gaussian fields which are fully characterized by their mean and
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covariance. Important examples of smooth Gaussian fields are random plane waves and
random spherical harmonics (see [64, 65]). In turn, the GFF and FGF are examples of highly
irregular random fields. As Brownian motion can be obtained as the limit of discrete random
walks, the Gaussian free field in two dimensions appears as the limit of discrete random
surfaces [66, 67]. Fast algorithms for generating Gaussian random processes and fields often
involve Fourier and wavelet transforms [68–70].

The GFF is constructed by choosing the Dirichlet Hilbert space H ( )W , in which the
scalar product of two functions f and g is defined as

f g x f g, d 33H ( · ) ( )( ) ò=  W
W



for a given Euclidean domain dW Ì . When Ω is bounded, an orthonormal basis of this
space can be obtained by setting x u xj j j

1 2( ) ( )y l= - , where u xj j 1,2,3,{ ( )} = ¼ are the L2-
normalized Dirichlet eigenfunctions of the Laplace operator forming a complete basis of
L2 ( )W :

u x u x x

u x x
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0 ,
34

j j j

j

( ) ( ) ( )
( ) ( )
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jl are the corresponding eigenvalues, and ¶W is the boundary of Ω. The GFF on Ω is defined
as
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where a 0, 1j ( )Î are independent Gaussian weights. Given that the eigenvalues jl
asymptotically grow as j d2 according to Weyl’s law [74, 75], the sum in equation (35) is
convergent for d=1 (in which case the GFF is simply a Brownian bridge) but diverges in
higher dimensions. In the plane, this sum barely misses convergence, being logarithmically
diverging. In quantum field theory, it is related to the infra-red divergence for massless
particles. As a consequence, F(x) is not a function but a distribution for d 1> . Being a linear
combination of normal variables, the field F(x) is Gaussian and thus is fully characterized by
its mean F x 0{ ( )} = and the covariance

F x F x u x u x G x x, , 36
j

j j j1 2
1

1
1 2 1 2{ }( ) ( ) ( ) ( ) ( ) ( ) ål= =

=

¥
-

where the right-hand side can be recognized as the Green function G x x,1 2( ) of the Laplace
operator in the domain Ω. Alternatively, one could define the GFF by setting the covariance
equal to the Green function (in which case the definition holds even for unbounded domains).
Strictly speaking, since the sum in equation (35) diverges for d 1> , the GFF should be
treated as a distribution by its action on every fixed test function x( )f . In particular, the
covariance should be given by the covariance of the actions of F on two test functions 1f and

2f :

F x F x x x G x x x x, d d , . 371 2 1 2 1 2 1 1 2 2{ }( ) ( ) ( ) ( ) ( ) ( ) òf f f f=
W´W

An extension to the GFF with the inhomogeneous Dirichlet boundary condition, i.e.,
F x f x( ) ( )= on ¶W for a given f(x), is easily obtained by adding to equation (35) the
harmonic function u x0 ( ) satisfying u x f x0 ( ) ( )= on the boundary. In particular, in one
dimension, harmonic functions are linear so that Brownian motion can also be understood as
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an extension of a Brownian bridge to connect B 0 0( ) = and B a1 0( ) ˆ= (i.e., with a random
inhomogeneous boundary condition B a1 0( ) ˆ= ).

FGFs can be obtained by replacing the gradient operators ∇ in the scalar product (33) by
fractional Laplacians2[71].

f g x f g, d , 38H ( )( ) · ( ) ( )( ) ò= -D -Dn n
W

W
n


for a positive ν. The Dirichlet Hilbert space is retrieved for 1 2n = . In a similar way, the
functions x u xj j j

2( ) ( )y l= n- form a basis of the space H ( )Wn
 , from which the FGF is

constructed as in equation (35). This sum is convergent for d 4n > and divergent otherwise.
In the particular case d 4n = , the FGF is logarithmically divergent in all dimensions. Note
that the FGF coincides with the GFF in the plane (d= 2). In particular, the FGF with
logarithmic correlations on the unit interval reads explicitly
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Comparing this representation to equation (19), one concludes that the FGF with logarithmic
corrections in one dimension appears as the half-derivative of a Brownian bridge:

F t
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B t
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where the half-derivative,
t

d

d

1 2 1 4( ) ( )= -D , is defined through the Laplacian eigenbasis.
This formula reveals a very close relation between these two processes which are often
considered as distinct objects. Note that the series in equation (40) diverges logarithmically,
while the derivative of order 1 2 - would lead to a converging series. In other words, the
Brownian bridge (as well as Brownian motion) belongs to the Hölder space H1 2 - (for any

0 > ) so that its derivatives of any order less than 1/2 exist, but the derivatives of order 1/2
and higher do not. As for Brownian motion, the explicit closed formula (35) allows one to
sample random realizations of the FGF by picking up a uniform number from the unit
interval, i.e., the probability space for this process is nothing other than the unit interval with
uniform measure.

4. Restricted diffusion

In this section, we briefly discuss how multiscaling and dyadic decompositions help simulate
restricted diffusion. This is a ubiquitous problem in physics (e.g., transport in porous media),
chemistry (e.g., heterogeneous catalysis), biology and physiology (e.g., diffusion in cells,
tissues, and organs). When Brownian motion is restricted, physico-chemical or biological
interactions between the diffusing particle and the interface of a confining medium should be
taken into account. For instance, paramagnetic impurities dispersed at a liquid/solid interface

2 For a function f on the whole space dW = , the fractional Laplacian, also known as the Riesz fractional
derivative, can be defined through the Fourier transform, in particular,

f x k f
k

k x f x
d

2
e d e .

d
kx kx1 i 2 i

d d ( )[ ] { }( ) ( ) ∣ ∣ { }
( )

∣ ∣ 
 ò òp

-D = = ¢ ¢n n n- - ¢

Even in one dimension, the fractional Laplacian of order 1/2 differs from the ordinary derivative due to the absolute
value k (the ordinary derivative corresponding to ik). Note also that the Riesz fractional derivative is different from
other fractional derivatives such as Riemann–Liouville or Caputo derivatives [72, 73]. For bounded domains, the
Laplacian eigenbasis yields a straighforward definition of ( )-D n .
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cause surface relaxation in nuclear magnetic resonance (NMR) experiments [76, 77]; cellular
membranes allow for semi-permeable transport through the boundary [78–80]; a chemical
reaction may transform the particle or alter its diffusive properties [81, 82]. While an accurate
description of these processes at the microscopic level is challenging, the contact with the
interface is very rapid at the macroscopic scale, allowing one to resort to an effective
description of the surface transport by an absorption/reflection mechanism [83, 84]. This
mathematical process is known as (partially) reflected Brownian motion [85–87].

The presence of a boundary drastically changes the properties of Brownian motion (e.g.,
the reflecting boundary forces the process to remain inside the domain). As a consequence,
earlier wavelet representations cannot directly incorporate the effect of the boundary. Since
restricted diffusion is relevant for most physical, chemical and biological applications, various
Monte Carlo methods have been developed for simulating this stochastic process, computing
the related statistics (e.g., the first passage times [88, 89]), and solving the underlying
boundary value problems [90–93]. The slow convergence of Monte Carlo techniques (typi-
cally of the order of M 1 2- in the number of trials) requires the fast generation of many
Brownian paths. The simplest generation of a Brownian path at successive times , 2 , 3 ,d d d ¼
by adding normally distributed displacements and checking the boundary effects at each step
becomes inefficient in multiscale media. In fact, tiny geometrical details of the medium
require the use of comparably small displacements, resulting in a very large number of steps
needed to model large-scale excursions.

To overcome this limitation, the concept of fast random walks was proposed [94]. The
basic idea consists in adapting displacements to the local geometrical environment, per-
forming as large as possible displacements without violating the properties of Brownian
motion. When the walker is at point x, the largest displacement is possible at the distance
x - ¶W between x and the boundary ¶W of a Euclidean domain dW Ì . In fact, the ball
B x x,( )- ¶W of radius x - ¶W does not contain any ‘obstacle’ (e.g., piece of boundary)
to the walker. Since Brownian motion is continuous, it must leave the ball before approaching
the boundary of the confining domain. The rotation symmetry implies that the exit points are
distributed uniformly over the boundary of the ball. Instead of modeling the fully-resolved
trajectory of Brownian motion inside the ball, one can just pick at random a point x¢ on the
sphere of radius x - ¶W and move the random walker to this new position. The random
duration of this displacement can be easily generated [88, 93]. From here, one draws a new
ball B x x,( )¢ ¢ - ¶W , and so on, until the walker approaches the boundary ¶W closer than a
chosen threshold. From this point, an appropriate boundary effect (e.g., absorption, relaxa-
tion, chemical transformation, permeation, reflection, etc.) is implemented. Due to its effi-
ciency, fast random walk algorithms have been used to simulate diffusion-limited aggregates
(DLAs) [95, 96], to generate a harmonic measure on fractals [86, 97, 98], to model diffusion–
reaction phenomena in spherical packs [99, 100], to compute the signal attenuation in pulsed-
gradient spin-echo experiments [101, 102], etc. In this section, we focus on multiscale tools to
estimate the distance, while other aspects of fast random walk algorithms can be found
elsewhere [93].

4.1. Distance to a boundary

The efficiency of fast random walk algorithms fully relies on the ability to rapidly estimate the
distance between any point (e.g., the current position of the walker) and the boundary.
Multiscale dyadic decompositions provide an efficient way to these estimates. To illustrate the
idea, we first consider the one-dimensional case and then discuss its straightforward extension
to the multidimensional case.
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In one dimension, the problem can be formulated as follows: given a set ym{ } of N
‘boundary’ points on the unit interval, how can the distance to this set from another point x be
estimated in a rapid way? Successive computation of the distances x ym- and finding their
minimum is of course the simplest but the slowest way (of the order of N). Instead of
computing the distances to all boundary points, one can split the unit interval into two half-
intervals, and check the distance to the points belonging to the half-interval that contains x. If
the distribution of points ym on [0, 1] is more or less uniform, this division approximately
halves the number of computations. In the same spirit, splitting on subintervals of length 1/4,
1/8, etc would reduce the number of computations roughly by factors 4, 8, etc. Using such
dyadic decompositions, one needs approximately Nlog2( ) splitting to achieve the level where
one (or a few) point ym belongs to the same subinterval as x. The number of computations is
then of the order of Nlog2( ) (assuming the distribution of boundary points is more or less
uniform). Moreover, if computation is carried with a desired precision e (to consider ym as
‘pointlike’, one needs N1e  ), one can continue splitting up to the level log 12( )e so that
the length of subintervals becomes smaller than e. Since the points ym{ } are stored with
precision e, one cannot distinguish two points at any scale smaller than e. Consequently, any
subinterval of length e can be either vacant, or occupied by only one point ym (two points
from the same subinterval would be indistinguishable). In this case, the number of compu-
tations, log 12( )e , is actually independent of whether the distribution of points ym is uniform
or not. In other words, this algorithm can be applied for any finite set of points ym that are all
distinguishable at scale e, i.e., y ym m  e- ¢ for any m and m¢.

4.2. Dyadic decomposition

For practical implementation, the boundary points ym are used to generate a dyadic tree of
subintervals at scales ranging from 1 to log 12( )e . In fact, one can associate to a boundary
point y 0, 1[ ]Î a sequence of dyadic intervals In y, 2n⌊ ⌋ such that y In y, 2n⌊ ⌋Î at any scale n
(figure 8). At each scale n, one chooses the left or the right subinterval depending on whether
the nth bit is 0 or 1. Applying this procedure to all boundary points ym, one generates a dyadic

Figure 8. Construction of a dyadic tree of subintervals for a given boundary point y by
its binary expansion.
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tree representing the boundary. Figure 9(a) shows an example with three boundary points
0, 0.4, 1{ } at five scales, from 20 to the smallest one 2 5e = - . The dyadic decomposition is
stored as a tree, where a vertex is associated with a subinterval. Each vertex can be connected
to one, two, or three other vertices (see figure 9(a)). The ‘height’ of the vertex from the ‘root’
determines the scale of the corresponding subinterval.

Once the dyadic decomposition for a boundary is constructed, it can be used to estimate
the distance to the boundary from any point x. In fact, one can easily (and very rapidly) find
the smallest subinterval In x, 2n⌊ ⌋ containing x and at least one boundary point. For this purpose,
one starts from the ‘root’ vertex and descends through the tree using the bits of x to choose the
left or right edges at each scale. The descent is stopped when there is no edge to follow
(figure 9(a)). Once the smallest common interval In x, 2n⌊ ⌋ is found, there are two options: either
n log 12( )⎢⎣ ⎥⎦e= so that the point x is indistinguishable from some boundary point at scale e,
and the distance estimate is set to 0; or n log 12( )⎢⎣ ⎥⎦e< , and the distance to the boundary
can be roughly estimated as 2 n 1- - since the next subdivision must separate the point x from
the boundary points. However, this simplistic argument fails when the point x and the closest
boundary point lie on opposite sides of the midpoint of the smallest common interval In x, 2n⌊ ⌋,
but very close to each other. Although the next subdivision separates these two points, the
distance between them can be arbitrarily small so that the naive estimate 2 n 1- - is wrong, as
illustrated in figure 9(a). To get the correct lower estimate, one can apply the so-called ‘one-
third trick’.

4.3. The one-third trick

The one-third trick can be easily illustrated for two points x and y. Let In x, 2n⌊ ⌋ be the smallest
common interval containing both points x and y. Suppose that the distance between these
points is smaller than 2 6n- . We consider the points x x 1 3¢ = + and y y 1 3¢ = +
(shifted by 1/3), and determine their smallest common interval In x, 2n⌊ ⌋¢ ¢¢ . As shown in

Figure 9. (a) Example of dyadic decomposition of the unit interval with three boundary
points 0, 0.4, 1{ } (shown by vertical dashed lines) and the related tree of subintervals
at five levels ( 2 5e = - ). For a test point x = 0.37 (shown by arrow), one uses its binary
expansion x 0.01011= ¼ to navigate over the tree. The descent is stopped at level
n 2= since I21=[1/4, 1/2) is the largest interval containing both 0.37 and 0.4 (note
that x I 3 8, 4 833 [ )Ï = ). However, the naive estimate, 2 0.125n 1 =- - , of the
distance between x and the boundary, x 0.37 0.4- ¶W = - = 0.03, obviously
fails. To get the correct lower estimate, one applies the one-third trick by constructing
the dyadic decomposition for the boundary points shifted by 1 3 (b). In this new tree,
the descent for the point x 1 3+ is stopped at level n 4¢ = . The combined lower
estimate 2 6 2 6n nmax , 4{ } =- ¢ - ≈0.0104 is valid.
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appendix D, the distance between the points x¢ and y¢ (and thus between the points x and y) is
larger than 2 6n- ¢ . It is thus sufficient to find the smallest common intervals for the pair x y,
and its shifted counterpart x y,¢ ¢, and the distance between the points is bounded below as

x y x y 2 6. 41n nmax ,{ }∣ ∣ ∣ ∣ ( )- = ¢ - ¢ ¢-

This simple fact allows one to rapidly estimate the distance to boundary points. Let us
consider a new boundary ¶W¢ which is obtained by shifting the old one by

x x1 3 : : 1 3{ }¶W¢ = Î - Î ¶W . For the new boundary, another dyadic tree of sub-
intervals is constructed (figure 9(b)) to estimate the distance between ¶W¢ and the shifted
point x x 1 3¢ = + at a given scale e. While this construction may appear redundant at first
thought because x x- ¶W = ¢ - ¶W¢ , the crucial point is that we search for a lower
estimate at a finite scale at which two dyadic trees are different. Performing the descent over
both dyadic trees (using the binary expansions of x and x¢, respectively), one identifies the
level n (resp. n¢) of the smallest common interval of x (resp. x¢) and the closest boundary point
(resp. shifted closest boundary point). The lower estimate of the distance is then (see
appendix D):

x x 2 6. 42n nmax ,{ }∣ ∣ ∣ ∣ ( )- ¶W = ¢ - ¶W¢ ¢-

4.4. Higher dimensions

Similar constructions are applicable in higher dimensions which are more relevant for
applications. In the simplest approach, the Euclidean distance between two points
x x x, , d1( )= ¼ and y y y, , ind

d
1( ) = ¼ can be bounded from below as

x y x y x ymax , 43
k

d

k k
k d

k k
1

2
1 2

1
{ }∣ ∣ ( ) ( )

⎛
⎝⎜

⎞
⎠⎟ 

 
å- = - -
=

i.e., by the largest distance among all projections. This inequality reduces the computation
back to the one-dimensional setting. However, since the maximum can be achieved along any
direction, one needs to repeat the one-third trick in all directions.

The practical implementation consists of several steps. First, a prescribed boundary ¶W is
discretized into a set of boundary points at a desired scale N (i.e., ¶W is approximated by a set
of hypercubes of size 2 N- ). Second, 2 1d - replicas of the boundary points are obtained by
shifting the original set by all vectors whose coordinates are either 0 or 1 3. There are 2 1d -
such vectors (excluding the zero vector) that produce 2 1d - shifted boundaries. Third, the
binary expansions of the coordinates of the boundary points are used to construct a 2d-adic
tree which replaces the dyadic tree used in one dimension. Similar construction is repeated for
all shifted boundaries, resulting in total in 2d trees.

Once this pre-construction is completed, one can use the trees to estimate the distance
from an arbitrary point x to the boundary ¶W. As previously, the binary expansions of the
coordinates of the point x navigate the descent over the first tree to determine the scale n of the
smallest hypercube that contains x and at least one boundary point. Similarly, the binary
expansions of the coordinates of the shifted point x¢ are used to descend over the corresp-
onding shifted tree to get the scale n¢. Performing 2d descents over all trees, one can estimate
the distance between x and ¶W as previously (see appendix D):

x 2 6, 44n n nmax , , ,{ }∣ ∣ ( )- ¶W ¢-  ¼

where n n n, , ,¢  ¼ are the scales for each tree.
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Although the complexity of this basic algorithm rapidly grows with the space dimension
d, it remains very fast in two and three dimensions. The quality of estimation and the
efficiency can be further improved, in particular, by implementing random rotations and
translations of the boundary. Although these transformations preserve the distance, they can
improve the lower bound at a finite scale. Note that one can use other multiscale constructions
and related searchable data structures such as Whitney decompositions of the computational
domain (in which the size of each square (or cube) paving the domain is comparable to the
distance to the boundary), quadtrees (or Q-trees), k-d trees, multigrid methods, etc [103, 104].

4.5. Overall efficiency

The advantages of multiscale dyadic trees are numerous: the simplicity of construction, the
generality of boundary shapes, the rapidity of distance estimation, the flexibility for shape
modification, and low memory usage. In fact, for a given precision e, the storage of a dyadic
tree requires at worst N log 12( )e intervals (i.e., log 12( )e levels for each boundary point, for
N points). In practice, this number is much smaller since many boundary points share the
same interval at larger scales (e.g., the interval of size 1 is shared by all boundary points).

The crucial point is that the geometrical structure of the boundary does not matter at all:
the method works for a random Cantor dust as well as for a circle. Moreover, the tree-like
representation is highly adaptive, allowing one to modify the boundary from one set of
simulations to another (or even from one run to another). This feature can be very useful to
study diffusion-controlled growth processes like DLA or transport phenomena in domains
with moving boundaries.

5. Conclusions

In this review, we revised the multiscale construction of Gaussian processes and fields. First,
the Haar wavelet representation of Brownian motion was explicitly constructed as a natural
way to refine the geometrical features of a Brownian path under magnification. Since the Haar
functions form a complete basis in the space L 0, 12 ([ ]) and their weights are Gaussian, such a
representation can be extended to any complete basis t Lof 0, 1j

2{ ( )} ([ ])y , wavelet-like or
not. In other words, the construction of Brownian motion has two separate ‘ingredients’:
deterministic functions tj ( )y capturing geometrical details, and their random weights ajˆ . The
voluntary choice of the functions tj ( )y offers a certain freedom and flexibility in dealing with
different problems. Qualitatively, this choice determines the way of connecting successive
positions of Brownian motion at a given scale. On the other hand, the random weights
determine the intrinsic stochastic properties of Brownian motion, independent of our choice
of basis tj{ ( )}y .

The multiscale construction gives not only a simple closed formula for Brownian motion,
but reveals its fundamental properties. For instance, the continuity and non-differentiability of
Brownian paths naturally follow from this construction. In addition, we discussed a closed
mapping from the unit interval onto the space of Brownian paths. Sampling Brownian paths
can therefore be formally reduced to picking up a real number with a uniform measure. This
construction does not require elaborate notions from modern probability theory such as
Wiener measures, sigma-algebras, filtrations, etc. Although these notions are useful, the
explicit multiscale construction is much easier for non-mathematicians.

These concepts are not limited to Brownian motion. We illustrated how fractional
Brownian motion, Gaussian free fields, and fractional Gaussian fields can be constructed in a
very similar way. Extensions to other Gaussian processes were also mentioned. Finally, we
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briefly discussed how multiscale concepts can be used for simulating restricted diffusion (i.e.,
Brownian motion in confining domains). The dyadic subdivision and the related hierarchical
(multiscale) tree of subintervals allow one to rapidly estimate the distance to the boundary and
thus to generate random displacements adapted to the local geometrical environment. Such
fast random walk algorithms have found numerous applications. As for usual Brownian
motion, dyadic decompositions appear as natural tools to store and rapidly access geometrical
information, resulting in fast algorithms.

Acknowledgments

DG acknowledges the financial support from the French National Research Agency (ANR
Project ANR-13-JSV5-0006-01). DB was partially funded by an EPSRC Fellowship ref. EP/
M002896/1.

Appendix A. Conditional law

We explain why the distribution of the position of Brownian motion y B 1 2( )= at time
t 1 2= under conditions B 0 0( ) = and B x1( ) = is given by the normal law x 2, 1 4( ) .
Since the increments of Brownian motion on the unit intervals (0, 1/2) and (1/2, 1) are
independent, the joint probability density B y B x1 2 , 1{ ( ) ( ) } = = is simply equal to the
product of the probability density B B y1 2 0{ ( ) ( ) } - = to have the first increment equal to
y and the probability density B B x y1 1 2{ ( ) ( ) } - = - to have the second increment
equal to x y- . These densities are given by normal laws with variance 1/2, yielding

B y B x1 2 , 1
e

2 1 2

e

2 1 2

e

2 1 4

e

2
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x 2
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y x

2 2
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2 2
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-

-

The second factor is simply the probability density for x B 1( )= , while the first factor is the
conditional probability density we are looking for:

B y B x1 2 1
e

2 1 4
.

y x 2 2 2
1 4

{ ( ) ∣ ( ) }
( )


p

= = =
- -

This is the normal distribution with the mean x 2 and the variance 1/4.

Appendix B. Uniform sampling of Brownian paths

In this appendix, we illustrate how all random Gaussian weights am˜ can be explicitly related
to a single uniformly distributed random number w. Sampling a Brownian path or another
Gaussian process or field is therefore reduced to picking a uniform random number. In other
words, we show that the complicated abstract probability space of Brownian paths can have a
simple parameterization. However, this construction remains formal and is thus not relevant
from a practical point of view.
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We consider the binary expansion of a given real number w from the unit interval

b b b b0. B.11 2 3 4 ( )w = ¼

where bi are equal to 0 or 1 (note that w= 1 is expanded as 0.111¼ instead of its equivalent
form 1.000K). A uniform picking of ω in [0,1] is equivalent to independent random choice of
its binary digits (or bits) bi. Then we choose a prime number p and construct another number

pw using the bits of w at positions p p p, , ,2 3 ¼

b b b b0. B.2p p p p p2 3 4 ( )w = ¼

For example, b b b b b b b b0. , 0.2 2 4 8 16 3 3 9 27 81w w= ¼ = ¼, etc (figure 10). If p and q are two
different prime numbers then pw and qw are independent as being constructed from separate
sets of independent bits bi. Moreover, if w is chosen uniformly from the unit interval, then
each pw is also uniformly distributed on the unit interval. Consequently, a single random
number w gives rise to an infinite sequence p{ }w of independent uniformly distributed random
variables. In a more formal way, the real numbers pw can be written as

R2 1 2 , B.3p
n

n p

1

1 n( )( ) ( )åw w= +
=

¥
- -

where R x 1 x( ) ( )⌊ ⌋= - is the Rademacher function.
Finally, we need to pass from uniformly distributed to normally distributed variables. For

this purpose, we define the inverse x( )F of the error function: for x 0, 1[ ]Î , the value y of the
function x( )F satisfies

z x
1

2
d e . B.4

y
z 22 ( )òp

=
-¥

-

Although there is no simple analytic form for the function x( )F , many properties can be easily
derived, and the whole function can be tabulated with any required precision.

If pm denotes the m 1 th( )+ prime (e.g., p p2, 30 1= = , p 52 = ), then we set

a m, 0, 1, 2, B.5m pm
˜ ( ) ( )w= F = ¼

By construction, am˜ are independent normally distributed random variables. In other words,
equations (B.3), (B.4) map a uniformly distributed w onto a sequence of Gaussian weights am˜ .
As a result, the Brownian path B t( ) is constructed as a mapping from the unit interval,

0, 1[ ]w Î , onto the space of real-valued functions (more precisely, the Hölder space H1 2 -
with any 0 > ). In other words, any Brownian path is explicitly encoded by the real number
w. Picking the real number w from the unit interval (with uniform measure) is thus equivalent
to choosing a Brownian path (with a Wiener measure). In this representation, the probability
space for Brownian motion is nothing other than a unit interval with uniform measure. It is

Figure 10. Generation of an infinite sequence of independent uniformly distributed
variables , , ,2 3 5w w w ¼ using binary expansion of a single number w from the unit
interval. For instance, 2w is constituted of the 2 , 4 , 8 ,nd th th ¼ bits of w.
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intuitively much simpler than the classical construction of the probability space by means of a
Wiener measure, filtrations, etc. At the same time, this mapping is evidently neither
continuous, nor injective (e.g., two numbers ω and ω′ that differ only at the 6th bit correspond
to the same sequence of Gaussian random numbers). The mapping remains a formal
construction whose only purpose was to show the mathematical equivalence between two
spaces.

Appendix C. Continuity and non-differentiability of Brownian motion

In this section, we illustrate how the wavelet representation of Brownian motion can be used
to prove its basic properties such as continuity and non-differentiability.

C.1. Continuity and convergence

First, we show that a partial sum approximation converges to Brownian motion in both L¥

and L2 norms. Let us denote

F t a h t C.1n
k

nk nk
0

2 1n

( ) ( ) ( )å=
=

-

so that B t a t F t F t0 0 1( ) ( ) ( )= + + + ¼ according to equation (7). Each function Fn is a
sum of hat functions with disjoint supports. To estimate the size of Fn we need some upper
bound on ank. We are going to show that a nnk < for all sufficiently large n.

Since a 0, 1nk ( )Î are standard normal variables, we observe that

a n z2 d
e

2
enk

n

z
n

2
2

2
2( )  ò p

=
¥ -

-

for sufficiently large n. This inequality yields

a n 2 e .
n k

nk
n

n n

0 0

2 1

0

2
n

2( )  å å å < ¥
=

¥

=

-

=

¥
-

By the Borel–Cantelli lemma this implies that a nnk < for all but finitely many coefficients
ank. In other words, a.s., there is a finite, but random, N* such that a n n Nifnk *< > . For
such n we have

F a n2 max 2 .n L
n

k
nk

n
0,1

2 1 2 1{ }([ ]) = <- - - -¥ 

Since the sum of these norms converges, the series a t F t
n n0 ( )å+ converges to B t( ) in L¥

norm (uniformly), i.e. for any 0 >

B t B tlim 0, C.2
N

N L 0,1{ }( ) ( ) ( )([ ])  - > =
¥

¥

where

B t a t a h t C.3N
n

N

k
nk nk0

0 0

2 1n

( ) ( ) ( )å å= +
= =

-

is a partial sum approximation of Brownian motion at the scale 2 N- . This proves that
Brownian motion is a.s. continuous. Moreover, the remainder of a partial sum approximation
at the scale 2 N- is exponentially small:
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B t B t F t
N3 3

2
, C.4N L

n N
n L N0,1

1
0,1 1 2

( ) ( ) ( ) ( ) ( )([ ]) ([ ])å- < <
+

= +

¥

+
¥ ¥

when N is large enough.
The L2 convergence can be shown in the same way. We have

F a h n2 2 ,n L
k

nk nk L
n n

0,1
2

0

2 1
2

0,1
2 2 2

n

2 2([ ]) ([ ])å= <
=

-
-   

where we used a nnk < for large enough n. This inequality implies the convergence of
F

n n L 0,12 ([ ])å   with probability one and hence the series in equation (7) converges a.s. in L2

norm:

B t B tlim 0. C.5
N

N L 0,12{ }( ) ( ) ( )([ ]) - =
¥

Both statements (C.2, C.5) can be extended to arbitrary spectral representation of Brownian
motion. Note also that these statements are applicable pointwise, e.g.,

B t B tlim 0 C.6
N

N{ }( ) ( ) ( ) - =
¥

for any t 0, 1[ ]Î .

C.2. Nowhere differentiability

Since Brownian motion is a sum of hat functions it is easy to believe that B(t) is not
differentiable almost everywhere. One can prove a much stronger statement that B(t) is
nowhere differentiable with probability one. The proof goes along the same lines as for
convergence (the argument follows the proof from [105]).

We are going to show that a.s. for all t at least one of the two limits,

B t
B t h B t

h
B t

B t h B t

h
lim sup , lim inf .( ) ( ) ( ) ( ) ( ) ( )¢ =

+ - ¢ =
+ -

is infinite. This obviously implies that B(t) is a.s. nowhere differentiable. Note that at local
extrema, one of these limits can be finite, so it is not true that both of them are always infinite.

Let us assume that there is a t0 such that both limits are finite at t0. This implies that there
is a random finite constant M such that

B t h B t

h
M C.7

0 0( ) ( )
( )

+ -
<

for all h. For a given scale n, let k be such that t0 is between dyadic points tn k, 1- and tn k, ,
where t k2n k

n
, º - . The triangle inequality implies that for any j

B t B t B t B t

B t B t M j2 1 2 .
n k j n k j n k j

n k j
n

, , 1 , 0

, 1 0

∣ ( ) ( )∣ ∣ ( ) ( )∣
∣ ( ) ( )∣ ( )

- < -
+ - < +

+ + - +

+ -
-

Let Enk be the event that this inequality holds for j 1, 2, 3= . Since increments are
independent normal variables, one gets E c 2nk

n 2 3{ } ( )  - , where c is a constant. The
probability that these inequalities hold for some k from 0 to 2 1n - is then bounded by

c c2 2 2n n n3 2 2( ) =- - . The sum of these probabilities over n is finite, hence by the Borel–
Cantelli lemma, with probability one only finitely many of them will occur. On the other hand
the assumed inequality (C.7) implies that infinitely many of Enk will occur. This yields the
contradiction and proves that (C.7) cannot be true.
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Appendix D. The one-third trick

Although the one-third trick is classical in analysis [106, 107], we provide some explanations
which may be instructive for non-experts.

We aim at proving the lower estimate (42) for the distance from a given point x to the set
of boundary points ym{ }. Let Ink be the largest interval that contains x and does not contain
any boundary point ym. This means that there exists a single dyadic point k2−n that separates x
and the nearest boundary point y ym{ }Î . Suppose that the lower estimate (42) does not hold,
in particular,

x y 2 3. D.1n∣ ∣ ( )- < -

We note that the smallest interval containing both x and at least one boundary condition
(considered in section 4.3) is twice as large as the largest interval Ink considered here. As a
consequence, the right-hand side of the inequality (42) includes an extra factor 1/2 to
compensate this notational difference.

The inequality (D.1) implies that there is no dyadic point k 2 n¢ - between the shifted points
x x 1 3¢ = + and y y 1 3¢ = + or, equivalently, there is no shifted dyadic point
k k2 1 3 2 1 2 3n n n n˜ ˆ ( )- = - -- - - between x and y (here k k, ˜¢ , and k̂ are integers). The last
statement is elementary because the shift of the original dyadic point k2−n moves it beyond
the interval between x and y, while the neighboring dyadic points k 1 2 n( ) - are too far from
this interval to be able to move in. Since there is no dyadic point between x¢ and y¢, they
belong to the same dyadic interval on the scale 2 n- , and the smaller scale n n2 withn ¢ >- ¢ is
needed to separate them. The distance x y¢ - ¢ should be at least 2 3n- ¢ , as otherwise the
same argument would imply that n n¢ < , in contradiction to the above inequality n n¢ > . We
conclude that the inequality (D.1) implies x y 2 3n¢ - ¢ - ¢ .

The same argument is valid if we assume that x y 2 3n¢ - ¢ < - ¢ . In this case we would
get that n n> ¢ and x y 2 3n- - . This proves that if x y x y- = ¢ - ¢ is smaller than
one of 2 3n- ¢ and 2 3n- , then it is larger than the other, i.e.,

x y min 2 3, 2 3 2 3n n n nmax ,{ } { }∣ ∣ - =¢ ¢- - -

which completes the proof.
We emphasize that the lower estimate 2 3n nmax ,{ }- ¢ is sharp. For instance, setting

x 2 3 e= - and y 1 e= + , one gets n n 0= ¢ = from which the lower estimate is 1 3,
while the distance x y 1 3 2e- = + can be made arbitrarily close to 1 3.

The same argument carries over in higher dimensions. For a given set of boundary points
(and their 2 1d - shifted copies), one constructs 2 2d d-adic trees. For a point x dÎ , one
determines scales n n n, , ,1 2 2d¼ by descending over these trees. Let n be the maximum over
these scales. Since all trees provide equivalent representations, we suppose that n n1= .
Assume that the lower estimate does not hold, i.e., there exists a boundary point y such that
x y 2 3n- < - . Since the scale n corresponds to the largest hupercube

U I In k n k n k, , , d1= ´ ¼ ´ that contains x but does not contain any boundary point, there is at
least one direction i d1, ,{ }Î ¼ such that y Ii n k, i

Ï (while x Ii n k, i
Î ). One gets

x y x y x ymax 2 3.i i
k d

k k
n

1
{ }∣ ∣  

 
- - - < -

We consider the shifted point x¢ and the shifted boundary point y¢ along the direction i.
Repeating the above one-dimensional construction for the direction i, one shows that both x i¢
and y i¢ belong to the same interval Inj¢ that contradicts the assumption that n was the
maximum.
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