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Abstract We consider a discrete-time population dynamics with age-dependent structure.
At every time step, one of the alive individuals from the population is chosen randomly and
removed with probability qk depending on its age, whereas a new individual of age 1 is born
with probability r . The model can also describe a single queue in which the service order is
random while the service efficiency depends on a customer’s “age” in the queue. We propose
a mean field approximation to investigate the long-time asymptotic behavior of the mean
population size. The age dependence is shown to lead to anomalous power-law growth of
the population at the critical regime. The scaling exponent is determined by the asymptotic
behavior of the probabilities qk at large k. The mean field approximation is validated by
Monte Carlo simulations.
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1 Introduction

Markov models have been thoroughly investigated in population dynamics and queueing
theory due to their numerous applications in demography, epidemiology, biology, ecology,
telecommunications, and social sciences [1–7]. One of the basic examples is a birth-death
process which is defined by a set of birth and death rates depending on the population size.
As a consequence, the population size plays the role of the state variable while individuals
are indistinguishable. More elaborate models include other mechanisms such as migration,
catastrophes, food/energy limited supply, or multi-species competition (e.g., prey-predator
models). In turn, individuals are distinguishable in queueing theory, e.g., customers are usu-
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ally served according to their order of arrival into the queue (i.e., their age in the queue),
the most common examples being “first in–first out” and “last in–first out” queues. More
generally, the service order can be either set by a given deterministic function of customers’
ages, or be random with prescribed age-dependent probabilities.

In this paper, we analyze the extreme case when the service order is fully randomized,
i.e., the customers are served independently of their ages. This case can be relevant when
the service order is not determined by the age but by other criteria such as, e.g., health state
or priority. When these criteria are unknown or hidden, the resulting choice by a server can
appear as random. In turn, the age of a randomly chosen customer can affect the “service
efficiency” through the probability qk with which the customer of age k leaves the queue after
receiving the service (e.g., curing a disease). Alternatively, this model can describe “impa-
tient” clients leaving the waiting room with probability qk [8]. In the context of population
dynamics, an individual is chosen randomly (e.g., by an accident) while the death probability
qk depends on its age k.

More precisely, we consider the following discrete-time toy model. At the beginning,
there is no individuals (or customers). At every time step, a uniformly chosen individual of
the population dies (a customer leaves the queue) with a prescribed probability qk which
depends on its age k. The age of all other individuals (customers) is increased by 1. During
the same time step, a new individual is born (a new customer arrives) with probability r .
This individual (customer) is assigned with the age 1. In this model, the “birth” (arrival
of a new customer) and the “death” (departure of the served customer) are independent of
the number of customers and settled by a serving system. These features (random choice
of individuals and population-independent rates) make the model distinct from common
models in population dynamics (in which the birth-death rates are typically proportional to
the population size, yielding exponential-like behavior in the simplest setting) and queueing
theory (in which the service order is typically determined by the age).

When all qk = q , individuals are indistinguishable, and one retrieves an elementary birth-
death process governing the population size.Understanding the impact of the age-dependence
of death probabilities qk onto the population dynamics is the main motivation of the paper.
In particular, we will show that in the critical regime, when qk asymptotically approach to r
(i.e., the birth and death events seem to be equilibrated), the mean population size still grows
due to fluctuations as a power law, tβ . The scaling exponent β equals 1/2 for a fast enough
(e.g., exponential) approach of the death probabilities qk to the limit r but, most surprisingly,
β takes nonuniversal values between 1/2 and 1 for a slow (e.g., power law) approach. This
unexpected behavior highlights the intricate role of the age-dependence of death probabilities
that results in long-time memory effects in the population dynamics. Although the model
might be too simplistic to accurately describe physical or social phenomena, it allows one
to inspect the essence of the anomalous population growth caused by the age-dependent
structure. Note that the role of age-dependent death rates has been thoroughly studied in
population dynamics in the context of the McKendrick partial differential equation [9,10]
and its extensions [11–17]. The present model and the related challenges are different.

The paper is organized as follows. In Sect. 2,we formalize themodel as aMarkov chain and
compute the mean population size at first time steps. In Sect. 3, a mean field approximation is
introduced to derive the recurrence relations for the mean population size and to investigate
its long-time asymptotic behavior. In Sect. 4, these relations are solved for the particular
case of truncated age-dependence when qk = q for k > T . In this case, the long-time
asymptotic behavior can be derived explicitly. In Sect. 5, we distinguish three asymptotic
regimes according to the limiting death probability q (qk → q): the linear growth for r > q ,
the critical regime at r = q , and the saturation at r < q . The validity of the mean field
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approximation is discussed and confirmedbyMonteCarlo simulations. Finally, Sect. 6 reports
conclusions and elucidates some open problems.

2 Markov Chain Formulation

Let ηk(t) denote the number of individuals of age k at time t . Since only one individual can
be born at one time step, ηk(t) takes values 0 or 1. At every time step, one individual is
uniformly chosen from the population and removed with probability qk , where k is the age of
the chosen individual. During the same time step, a new individual is born with probability
r :

η1(t) =
{
1 with probability r,

0 with probability 1 − r.
(1)

We are interested in the population size,

η(t) =
∞∑
k=1

ηk(t), (2)

i.e., the number of individuals at time t . Since the death probability qk depends on the age of
the chosen individual, the population size does not fully characterize the state of the system
so that the model cannot be reduced to a standard birth-death process. At the same time,
the model can be formulated as a Markov chain on an infinite-dimensional space of states.
In fact, each state of the system is characterized by a binary sequence whose k-th element
encodes whether the individual of age k is present (ηk(t) = 1) or not (ηk(t) = 0). The space
of states is therefore formed by all binary sequences. It is convenient to denote the states
by integer numbers: 0 = (0, 0, 0, 0, . . .), 1 = (1, 0, 0, 0, . . .), 2 = (0, 1, 0, 0, . . .), etc. The
above birth-death rules determine the transition matrix Wm,n describing the probability of
passing from the state m to the state n. The first elements of this matrix are⎛

⎜⎜⎜⎜⎜⎜⎝

m\n 0 1 2 3 4 5 6 7
0 r ′ r 0 0 0 0 0 0
1 r ′q1 rq1 r ′q ′

1 rq ′
1 0 0 0 0

2 r ′q2 rq2 0 0 r ′q ′
2 rq ′

2 0 0
3 0 0 1

2q2r
′ 1

2q2r
1
2q1r

′ 1
2q1r

1
2 (q

′
1 + q ′

2)r
′ 1

2 (q
′
1 + q ′

2)r
. . . . . . . . . . . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎠

where prime denotes the complementary probability, i.e. r ′ = 1 − r , etc. For instance,
W3,4 = 1

2q1(1 − r) describes the transition from (1, 1, 0, 0, . . .) to (0, 0, 1, 0, . . .) which
occurs if the individual of age 1 is chosen (with probability 1/2) and removed (with probability
q1), while no new individual is born (with probability 1−r ). In general, the line of the matrix
W corresponding to a state

m = (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . .)
j1 j2 . . . j�

with � individuals of ages j1, . . . , j� contains 4� nonzero elements describing four options
for each of � individuals: death with probability q ji /� or survival with probability (1−q ji )/�

(i = 1, . . . , �), as well as birth of a new individual with probability r , or not.
Once the matrix is constructed, the distribution at time t can be computed as P(t) =

P(0)Wt , where P(0) is the vector representing the initial state: Pn(0) = δn,0 (no individuals).
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In particular, the probability distribution at first steps is

P(0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
· · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

, P(1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

r ′
r
0
0
0
· · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

, P(2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

r ′2 + rr ′q1
rr ′ + r2q1

rr ′q ′
1

r2q ′
1

0
· · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

, . . .

The elements of the vector P(t) are related to the mean number of individuals of age k at
time t as

〈ηk(t)〉 = 0 · P{ηk(t) = 0} + 1 · P{ηk(t) = 1} =
∑

[n]k=1

Pn(t), (3)

where[n]k denotes the k-th element in the binary expansion of n, and the sum is taken over
all n for which [n]k = 1. In other words, one adds the complementary probabilities of all
states that contain an individual of age k. Finally, the mean population size is

〈η(t)〉 =
∞∑
k=1

∑
[n]k=1

Pn(t). (4)

This explicit construction yields for the first time steps:

〈η(1)〉 = r,
〈η(2)〉 = r(2 − q1),
〈η(3)〉 = r

(
1 + (1 − q1)(2 − q2 + r(q1 + q2)/2)

)
.

(5)

One can see that the exact expressions are rapidly getting very complicated.
An explicit solution for any time t can be obtained in several special cases:

(i) When all q j = 0, the individuals are produced at a fixed rate r so that 〈η(t)〉 = r t .
(ii) When q1 = 1 (i.e., certain death of the individual of age 1), one gets 〈η(t)〉 = r at any

t , as the system remains trapped in the state 1. Note that the condition q j = 1 for any
other j > 1 does not imply such trapping because, for two or more individuals, there
is a chance of choosing the individual of age which is different from j .

(iii) When all q j = q , individuals are indistinguishable, and one recovers a simple birth-
death process. The population size η(t) can be described as a biased reflected random
walk.When η(t) > 0, one of the three events can occur: the population size is increased
by 1 with probability r(1 − q), decreased by 1 with probability (1 − r)q , or kept the
same with the complementary probability 1− r(1− q)− (1− r)q . In turn, if η(t) = 0,
only two events can occur: η(t) is increased by 1 with probability r , or kept the same
with probability 1 − r . The special consideration of the case η(t) = 0 is equivalent
to imposing the reflecting boundary condition at 0 that ensures that the number of
individuals remains nonnegative. If this condition was ignored, the mean population
size would be 〈η(t)〉 = 〈η(1)〉+(t−1)[r(1−q)−q(1−r)] = (r−q)t+q , as expected.
This relation describes the long-time asymptotic behavior of 〈η(t)〉 for r > q but it is
not exact (compare with Eq. (5) at small times). If r = 1, the condition η(t) = 0 is never
satisfied for t > 0, and one gets the trivial exact solution 〈η(t)〉 = (1−q)t +q . Finally,
if r = q, the population size is increased or decreased by 1 with equal probabilities
q(1−q), and the population dynamics is reduced to an unbiased reflected randomwalk
on the positive semi-axis (whose mean one-step displacement is zero). Since the mean
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position of reflected Brownian motion on the positive semi-axis is
√
2σ 2t/π , setting

the one-step variance σ 2 to be 2q(1 − q) yields

〈η(t)〉 � √
4q(1 − q)/π

√
t . (6)

In other words, one gets the long-time asymptotic growth of the population size as the
square-root of time at the critical regime when r = q . The square-root behavior will be
universally retrieved in the general case of age-dependent death probabilities qk that rapidly
converge to r as k → ∞. In turn, slow convergence of qk will result in a faster mean
population size growth.

(iv) When r = 1, qk = 0 for k ≤ T , and qk = 1 for k > T , the exact solution is given in
Appendix.

The first two cases represent the fastest and the slowest population dynamics so that in
general, r ≤ 〈η(t)〉 ≤ r t . We checked numerically for the first time steps that 〈η(t)〉 grows
monotonously.Moreover, 〈η(t+1)〉 = 〈η(t)〉was observed only in two extreme cases: r = 0
(no birth event) or q1 = 1 (trapped case). We conjecture that the strictly monotonous growth
of 〈η(t)〉 holds at all times. As a consequence, 〈η(t)〉 either converges to a finite limit, or
grows up to infinity at long times.

3 Mean Field Approximation

Although the model is formalized as a Markov chain, the exact computation of the mean
population size does not seem to be feasible at long times. In fact, the binary encoding of
the population states by integers suggests thinking about the model as a random hopping on
a nonnegative integer semi-axis. However, this random walk is nonlocal, i.e., its jumps can
be arbitrarily large. For instance, the process can jump from the state 2 j−1 (representing one
individual of age j) to the state 0 (no individuals) with probability (1−r)q j , or to the state 2 j

(one individual of age j + 1) with probability (1− r)(1− q j ). Since we are interested in the
long-time behavior of the population dynamics, all these transitions have to be accounted.
This nonlocal character is related to a highly nonlinear relation between binary encoded states
and the number of individuals (the latter being the number of bits in the binary expansion).
These features make an exact solution of the model challenging.

To overcome this difficulty, we propose a mean field approximation which consists in
two steps. (i)While the death event concerns only one individual per time step, one can
approximate the changes in the population as an averaged effect, as though each individual
could die at every time step so that all ηk(t) are effectively updated as

ηk+1(t + 1) =
{

ηk(t) with probability 1 − qk/η(t),

0 with probability qk/η(t).
(7)

In other words, an individual of age k that was alive at time t , is getting older (of age k + 1)
at time t + 1 with probability 1 − qk/η(t), or dies with the complementary probability. The
factor 1/η(t) accounts for the uniform choice over η(t) individuals. The above dynamic
rule is ignored when there is no individual (i.e., when η(t) = 0). We emphasize that this
dynamic rule is slightly different from the original one: although this scheme reproduces the
dynamics on average, it allows for several individuals to die during one time step. (ii)The
mean number of individuals of age k, 〈ηk(t)〉, can be approximately found by replacing the
random population size η(t) in Eq. (7) by its mean value 〈η(t)〉. The average of Eq. (7)
becomes
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Nk+1(t + 1) = Nk(t)
(
1 − qk/N (t)

)
, (8)

where Nk(t) andN (t) are the mean field approximations of 〈ηk(t)〉 and 〈η(t)〉, respectively.
The set of inequalities

N (t) ≥ qk for all t and k (9)

is the necessary condition for this approximation to be meaningful (otherwise some Nk(t)
could become negative). Its validity and accuracy will be discussed later. Given that

N1(t − k + 1) = 〈η1(t − k + 1)〉 =
{
r (k ≤ t),

0 (k > t),
(10)

the repeated application of Eq. (8) yields

Nk+1(t + 1) =

⎧⎪⎪⎨
⎪⎪⎩
r

k∏
j=1

(
1 − q j

N (t − k + j)

)
(k ≤ t),

0, (k > t).

(11)

Substituting this relation into the definition of 〈η(t)〉 leads to a closed expression for N (t)

N (1) = r, N (t + 1) = r
t∑

k=0

k∏
j=1

(
1 − q j

N (t − k + j)

)
. (12)

The inequalities (9) at t = 1 require that

qk ≤ r for all k. (13)

This condition is also sufficient for recovering the main features of the original population
dynamics. In fact, from the first relationN (1) = r , one can demonstrate by induction that all
factors (1−q j/N (t−k+ j)) in Eq. (12) are positive andN (t)monotonously grows. Finally,
the approximate mean population size remains bounded, r ≤ N (t) ≤ r t , in agreement with
the similar bounds for 〈η(t)〉 (see Sect. 2).

We emphasize that the inequalities (13) are needed for the mean field approximation while
no restriction on qk and r was imposed in the original model. For instance,the mean field
approximation N (2) = 2r − q1 becomes negative if r < q1/2, while 〈η(2)〉 = r(2 − q1) is
positive for any r and q1. The above restriction is not surprising because the substitution of the
integer random population size η(t) by its mean value is expected to be valid for large 〈η(t)〉
but may not be applicable for small values. More generally, the mean field approximation
aims at capturing the long-time asymptotic behavior but may be inaccurate or even invalid
at small times. As a consequence, the inequalities (13) can potentially be relaxed if only
the asymptotic behavior matters. In particular, we will show that the approximate solution
may still be accurate asymptotically even if some q j exceed r . In what follows, we focus on
the regular case qk ≤ r keeping in mind possible extensions. In the age-independent case,
q j = q , the solution (12) is reduced to the trivial linear dynamics:

N (t) = t (r − q) + q. (14)

In turn, age-dependent death probabilities lead to a rich population dynamics due to the
memory effects in Eq. (12). In general, the death probabilities {qk} are arbitrary real numbers
from 0 to 1. We focus on the relevant situation when the sequence {qk} converges to a limit
q as k → ∞. We also exclude the trivial dynamics with q1 = 1 in which case the population
growth would be blocked at the age 1, with N (t) = 〈η(t)〉 = r .
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4 Truncated Death Probabilities

When the death probabilities qk converge to a limit q , one can expect that, for a large enough
age T , the qk for k > T are so close to q that they can be replaced by q . To explore this idea,
we consider the case of truncated age-dependence: qk = q for k > T (while qk are arbitrary
for k ≤ T ).

Due to this truncation, Eq. (12) can be rewritten, by applying the similar formula forN (t),
as

N (t + 1) − N (t) = r − q + r

N (t)

T∑
k=1

(q − qk)
k−1∏
j=1

(
1 − q j

N (t − k + j)

)
(15)

for t > T . In contrast to the general relation (12), in which the mean population sizeN (t+1)
at time t + 1 depends on all N (t), . . . ,N (1), the memory effect in Eq. (15) is limited by a
time span T , i.e., N (t + 1) depends on N (t), . . . ,N (t − T + 1).

When r > q , the population size exhibits a linear growth at large times:

N (t) � (r − q)t + N0 (t � T ), (16)

where the constant N0 results from the short-time dynamics. The asymptotic behavior can
be checked by substituting this relation into Eq. (15) and noting that the sum in the second
term is bounded by

∑T
k=1 |q − qk |. In turn, N (t) in the denominator grows up to infinity,

thus cancelling this term.
The above argument does not hold when r = q , in which case the above relation reads

N (t)[N (t + 1) − N (t)] = r
T∑

k=1

(q − qk)
k−1∏
j=1

(
1 − q j

N (t − k + j)

)
.

If N (t) grows up to infinity, the right-hand side converges to a constant r
∑T

k=1(q − qk)
which does not depend on time t . At large t , N (t + 1) − N (t) can be interpreted as the
derivative of N (t), yielding the differential equation N (t)N ′(t) � r

∑T
k=1(q − qk) that is

integrated up to t to get the asymptotic behavior

N (t) �
(
2r

T∑
k=1

(q − qk)

)1/2 √
t (t � T ). (17)

The condition (13) ensures the positive sign of the sum under the square root. One can see that
the square-room asymptotic behavior (6) is extended to the case of truncated age-dependent
death probabilities.

4.1 Death After a Fixed Age

To provide a specific example, we consider a simple situation when any selected individual
of age k below (or equal to) T surely survives while an individual of age above T dies with
probability q: qk = 0 for k ≤ T and qk = q otherwise. Substituting these {qk} into Eq. (12)
yields the linear growth N (t) = r t for t ≤ T and

N (t + 1) − N (t) = r − q + qrT

N (t)
(t > T ). (18)

This equation could be directly obtained from Eq. (15). Setting T = 0, one retrieves the
trivial dynamics (14).
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If r > q , the right-hand side of Eq. (18) is positive. While N (t) progressively increases,
the last term diminishes, and one recovers asymptotically the linear growth. If r < q , the
sign of the growth rate is controlled by N (t): too small N (t) yields the positive sign of
the right-hand side and thus triggers an increase of N (t), and vice-versa. One approaches
the stationary limit N (∞) = qrT/(q − r). Finally, at the critical regime r = q , one
gets

N (t)
[N (t + 1) − N (t)

] = qrT .

ReplacingN (t+1)−N (t) at large t by the derivative ofN (t) yields the differential equation
N (t)N ′(t) � qrT that is integrated from T to t to get N (t)2 − N (T )2 = 2qrT (t − T ),
from which

N (t) �
{
r t (t ≤ T ),

r
√
T (2t − T ) (t > T ).

(19)

This mean field solution agrees well with the exact solution of the original model for r =
q = 1 presented in Appendix.

5 Asymptotic Regimes

In order to validate the predicted asymptotic regimes and the mean field approximation, we
computed the mean population size 〈η(t)〉 by averaging η(t) over 1000 simulated dynam-
ics governed by the original model. The mean field approximation N (t) was calculated
numerically by recurrence relations (12). Note that a straightforward implementation of these
relations would require O(t3) operations that starts to be time-consuming for t � 1000. One
can speed up the computation by re-arranging the terms in Eq. (12) as follows

t = 2 (1 − q1c1) 0 0 0 . . .

t = 3 (1 − q1c1)(1 − q2c2) (1 − q1c2) 0 0 . . .

t = 4 (1 − q1c1)(1 − q2c2)(1 − q3c3) (1 − q1c2)(1 − q2c3) (1 − q1c3) 0 . . .

. . . . . . . . . . . . . . . . . .

where ct = 1/N (t). Using this structure, one computes the elements of the k-th line by
adjusting the elements of the previous (k − 1)-th line, while N (k) is obtained by summing
these contributions, adding 1, and multiplying by r . In this algorithm, the computation of
N (t) requires O(t2) operations.

For illustrative purposes, we focus on two families of the death probabilities: (i) rapidly
converging sequenceqk = q(1−e−αk), and (ii) slowly converging sequenceqk = q(1−k−α),
both characterized by α > 0. The sign in front of the second term ensures the inequality
qk ≤ q which, in turn, implies the condition (13) if r ≥ q . Although an additional coefficient
could be introduced in front of the second term, it does not affect the asymptotic behavior
(except through some constants). We do not truncate the above sequences at a fixed age T
in order to investigate the relevance of this threshold that we used to derive the asymptotic
regimes in Sect. 4.

We consider three cases: r > q , r = q , and r < q . In the latter case, the mean field
approximation may be invalid. However, we show that it is still applicable and accurate
under certain conditions even in this case.
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Fig. 1 Themean population size at the linear regime (r = 1, q = 0.8)with the death probabilities qk following
an exponential law qk = q(1− e−αk ) (a), or a power law qk = q(1− k−α) (b). Symbols show the empirical
mean 〈η (t)〉 from Monte Carlo simulations, whereas thick lines present the mean field approximation N (t)
from Eq. (12). The thin line indicates the linear asymptotic growth (r − q)t

5.1 Linear Regime: r > q

Figure 1 illustrates the linear asymptotic growth (16) of the mean population size. For both
exponential and power-law convergence and all α, the slope of the asymptotic growth is only
determined by r − q . In turn, the convergence features (e.g., the exponent α) determine the
constant shift term N0 and how fast the asymptotic regime is established. Smaller values
of α correspond to slower convergence of qk to q and result in slower convergence to the
asymptotic behavior and in larger shift terms. In particular, the curve for α = 0.5 on Fig.
1b does not even reach the linear asymptotic growth. We also conclude that the mean field
solution (12) accurately approximates the empirical mean 〈η(t)〉, justifying the mean field
approximation introduced in Sect. 3.

5.2 Saturation Regime: r < q

For r < q , the saturation regime is expected at long times. This regime is characterized by a
finite population size N (∞) that can be found by solving numerically the limiting equation
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Fig. 2 The mean population size at the saturation regime (r = 0.8, q = 1) with the death probabilities qk
following an exponential law qk = q(1− e−αk ) (a), or a power law qk = q(1− k−α) (b). Symbols show the
empirical mean 〈η(t)〉 fromMonte Carlo simulations, whereas thick lines present themean field approximation
N (t) from Eq. (12)

N (∞) = r
∞∑
k=0

k∏
j=1

(
1 − q j

N (∞)

)
. (20)

Figure 2 shows the saturation of the mean population size N (t) for both exponential and
power-law convergence of the death probabilities qk .Whatever the choice of the convergence,
N (t) saturates to a limit N (∞). The convergence features (e.g., the exponent α) determine
the limiting value N (∞) and how fast the saturation occurs.

According to Eq. (11), the stationary population age profile Nk+1(∞) reads

Nk+1(∞) = r
k∏
j=1

(
1 − q j

N (∞)

)
. (21)

Since {q j } converge to q , the age profile exhibits an exponential decay at large k:

Nk(∞) ∝ exp(k ln(1 − q/N (∞))) � exp(−kq/N (∞)),

where the last approximate relation is valid for large N (∞).
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The comparison to the empirical mean 〈η(t)〉 shows that the mean field approximation
provides an accurate solution N (t) even for r < q , i.e., formally beyond its validity range.
This observation is related to the particular choice of r and qk . For the chosen parameters, the
first death probabilities qk are below r that allows one to apply the mean field approximation
at the first steps up to some t0. As a consequence, the mean population size N (t) has grown
enough to ensure the inequalities N (t) ≥ qk for t > t0 and therefore the applicability of the
mean field approximation at longer times. At the same time, the mean field approximation
would fail for all examples from Fig. 2 if the birth rate r was chosen small enough (e.g., it is
sufficient to take r < q1/2 for getting a negative N (2)).

5.3 Critical Regime: r = q

With no loss of generality, we set r = q = 1 at the critical regime (one can check that Eq.
(12) remains invariant under rescaling r → ar , q → aq , N (t) → aN (t)).

Figure 3 illustrates the behavior of the mean population sizeN (t) at the critical regime. In
contrast to both linear and saturation regimes (r 
= q), for which only the probabilities r and
q determined the asymptotic behavior, the population dynamics at the critical regime (r = q)
turns out to be sensitive to the convergence rate. On one hand, Fig. 3a shows the square-root
asymptotic behavior of N (t) for all sets of exponentially converging death probabilities,
in agreement with Eq. (17) derived for the truncated case. In other words, the exponential
convergence is fast enough so that it can be truncated and yield the universal square-root
behavior. On the other hand, Fig. 3b reveals a non-universal power-law growth of the mean
population size,

N (t) ∝ tβ (t → ∞), (22)

for a slower, power-law decay of the death probabilities: qk = q(1− k−α). The exponent β,
which was equal to 1/2 for an exponentially fast convergence and for any truncated set of
death probabilities, depends on α for a power-law convergence.

Fitting the slope of N (t) in the log-log plot is not enough to accurately estimate the
exponent β due to next-order terms (we emphasize that Eq. (22) captures only the leading
term). For this purpose, we first computed the local exponent β(t) as the slope between two
neighboring points in the log-log plot,

β(t) = ln(N (t + 1)/N (t))

ln((t + 1)/t)
,

and then extrapolated its values to t = ∞ by fitting β(t) versus 1/
√
t by a fourth-order

polynomial over the broad range of t (from 1000 to 50000). A somewhat artificial choice of
1/

√
t instead of 1/t allowed us to get the dependence closer to a linear one. Figure 4 shows

the extrapolated β as a function of α. One can note the exponentially fast approach of the
exponent β to 1/2 as α increases.

This example shows that the truncated case analyzed in Sect. 4 does not capture all features
of the population dynamics at the critical regime. In particular, a slow convergence of the
death probabilities results in a faster, anomalous growth of the population size.

In the limit t → ∞, the mean population size N (t) is large according to Eq. (22).
Expanding the product of k factors in Eq. (11) and keeping only the leading terms, one gets

Nk(t + 1) � 1 −
k∑
j=1

q j

N (t − k + j)
� 1 − 1

N (t)

k∑
j=1

q j (k � t), (23)
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Fig. 3 The mean population size at the critical regime (r = q = 1) with the death probabilities qk following
an exponential law qk = q(1− e−αk ) (a), or a power law qk = q(1− k−α) (b). Symbols show the empirical
mean 〈η(t)〉 from Monte Carlo simulations, thick lines present the mean field approximation N (t) from Eq.
(12), whereas thin lines indicate the power law (22), with β being either 0.5 (a) or 0.6673, 0.5346, and 0.5004
for α = 0.5, 1, 2, respectively (b). To ease visual comparison, the coefficient in front of tβ in Eq. (22) is set
to 6.0, 4.3 and 3.0 for α = 0.05, 0.1, 0.2 (a), and to 1.9, 2.4, 1.8 for α = 0.5, 1, 2 (b)

where we used N (t − k + j) ≈ N (t) for | j − k| � t in the last relation. One can see that
the mean number of individuals of age k progressively saturates to the maximum level 1 as
t → ∞, though the rate of this saturation decreases with k, as illustrated on Fig. 5.

6 Discussion and Conclusion

Weconsidered a simplemodel of population dynamics inwhich the death probability depends
on the age of a randomly chosen individual. While this model was formalized as a Markov
chain, the complicated structure of the transition matrix did not allow us to investigate the
long-time asymptotic behavior of the mean population size. To overcome this difficulty, a
mean field approximationwas introduced in two steps: (i) a single death event for one individ-
ual was replaced by an average impact over the whole population through the dynamic rule
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Fig. 4 The dependence of the exponent β of the anomalous population growth (22) on the exponent α at the
critical regime, with qk = 1− ck−α , q = r = 1, and c = 1 (circles) and c = 2 (line). As expected, the factor
c in front of k−α does not affect the scaling exponent
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Fig. 5 Themean number Nk (t) of individuals of age k as a function of t at the critical regime, with q = r = 1,
qk = 1 − k−α , and α = 0.5

(7), and (ii) the random population size η(t) in Eq. (7) was replaced by its mean value 〈η(t)〉.
These two approximations resulted in the recurrence relation (12) for the mean population
size, as well as Eq. (11) for the mean population age profile. The recurrence relation (12)
expresses the (approximate) mean population size N (t + 1) through the mean population
sizes at earlier times. While the original model is a Markov chain, the dynamics of the mean
population size exhibits strong memory effects. The mean field solution N (t) was shown to
be bounded between r and r t , and to exhibit a monotonous growth. The same features were
observed numerically for the original model but a proof is missing. The accuracy of the mean
field approximation was confirmed by Monte Carlo simulations. The set of inequalities (13)
was positioned as the necessary and sufficient condition for the validity of the mean field
approximation. However, Monte Carlo simulations showed that the approximate solution
N (t) accurately captured the long-time asymptotic behavior of 〈η(t)〉 even if the inequalities
(13) are not satisfied for some j . Further analysis of the original model is needed to clarify
the validity range of this approximation.

The analytical mean field solution allowed us to investigate the long-time asymptotic
behavior of the mean population size. As intuitively expected, three different regimes have
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been identified according to the ratio between the birth probability r and the asymptotic
death probability q: linear growth for r > q , saturation for r < q , and critical regime for
r = q . The age dependence of the death probabilities qk was shown to be irrelevant for the
two former cases (r 
= q): what matters is the balance between birth and death events. In
contrast, the age dependence becomes crucial at the critical regime. When the convergence
of the death probabilities qk to the limit q is fast (e.g., exponential), old individuals behave
similarly, and the mean population size N (t) grows as

√
t , as expected from the analogy

with a reflected random walk. In turn, when the death probabilities converge as a power
law, qk = q(1 − k−α), the distinction between old individuals remains significant, and the
mean population size grows faster, as tβ , with an exponent β between 1/2 and 1. A rigorous
determination of the relation between β and α remains an open problem.

Acknowledgments The author acknowledges partial support under Grant No. ANR-13-JSV5-0006-01 of
the French National Research Agency.

Appendix: Exact Solution for a Fixed Death Age Model at the Critical
Regime

We derive the exact solution for the particular case with r = 1, qk = 0 for k ≤ T , and qk = 1
for k > T . In other words, a new individual is added at each time step, while a uniformly
chosen individual is removed if its age exceeds T .

We split the population into “young” (k ≤ T ) and “old” (k > T ) individuals according
to their age. For the first T steps, the population grows linearly with time: the number of
young individuals is t , while there is no old individuals. For t > T , the number of young
individuals is fixed because at every time step, a new young individual is added while one
young individual becomes old. In turn, the number η̃t of old individuals at time t is a random
variable which follows simple dynamics:

η̃t+1 =
{

η̃t , with probability η̃t/(η̃t + T ),

η̃t + 1, with probability 1 − η̃t/(η̃t + T ).
(24)

In fact, at time t , the probability to choose an old individual is η̃t/(η̃t + T ), in which case
this individual is removed, and the number of old individuals is not changed. In turn, with the
complementary probability 1 − η̃t/(η̃t + T ), the chosen individual is young and is thus not
removed. As a consequence, the number of old individuals is increased by 1. This process is
Markovian since the next state is fully determined by the current state.

LetQn(t)be theprobability that η̃t = n or, equivalently,η(t) = n+T ,whereη(t) = η̃t+T
is the total number of individuals (i.e., the population size). In analogy with random walks,
one can write the master equation on Qn(t):

Qn(t) = κnQn(t − 1) + (1 − κn−1)Qn−1(t − 1), (25)

where κn ≡ n/(n+ T ). In fact, the state η̃t = n can be achieved either from the same state at
the earlier time (with probability κn for not moving), or from the state η̃t−1 = n−1. Applying
this relation repeatedly, one can express Qn(t) in terms of the probabilities Qn−1(t ′) at earlier
times t ′:

Qn(t) = (1 − κn−1)

t−n+1∑
j=1

κ
j−1
n Qn−1(t − j). (26)
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Note that the upper limit was set to t − n + 1 instead of t since Qn−1( j) = 0 for j < n − 1
(since the population can only increase by one per time step). The initial condition for the
master equation is Qn(T ) = δn,0, i.e., no old individual at the beginning of the diffusive
phase.

The above equations can be solved exactly:

Qn(T + t) =

⎧⎪⎨
⎪⎩

n∑
j=1

cn, jκ
t
j , (t ≥ n),

0, (t < n),

(27)

where the coefficients cn, j are

cn, j = 1

κ j

(
n−1∏
i=1

(1 − κi )

) ⎛
⎝ n∏

i 
= j

1

κ j − κi

⎞
⎠ = (−1)n+ j ( j + T )n−1(n + T )

j !(n − j)! . (28)

The moments of the old population size are

〈[η̃T+t ]m〉 =
t∑

n=1

nmQn(T + t) =
t∑

j=1

b(m)
j,t κ t

j , (29)

where

b(m)
j,t =

t∑
n= j

nmcn, j . (30)

For instance, one finds

b(0)
j,t = ( j+T )t (−1)t+ j

j !(t− j)! ,

b(1)
j,t = tb(0)

j,t − ( j+T ) j

j !
t− j−1∑
n=0

(−1)n ( j+T )n

n! ,

from which

〈η̃T+t 〉 = t −
t−1∑
j=1

j t

j !
t− j−1∑
m=0

(−1)m
( j + T ) j+m−t

m! . (31)

The mean population size is therefore

〈η(t)〉 =
{
t, (t ≤ T ),

T + 〈η̃t 〉, (t > T ).
(32)

We checked numerically that this solution is very close to the mean population size obtained
in Sect. 4.1.

References

1. Murrey, J.D.: Mathematical Biology. I. An Introducation, 3rd edn. Springer, New York (2002)
2. Hoppensteadt, F.C.:Mathematical Theories of Populations: Demographics, Genetics and Epidemics (Vol-

ume 20 of CBMS Lectures). SIAM Publications, Philadelphia (1975)
3. Hoppensteadt, F.C.: Mathematical Methods of Population Biology (Cambridge Studies in Mathematical

Biology). Cambridge University Press, Cambridge (1982)
4. Brauer, F., Castillo-Chavez, C.: Mathematical Models in Population Biology and Epidemiology, 2nd edn.

Springer, New York (2012)

123



Anomalous Growth of Aging Populations 455

5. Takacs, L.: Introduction to the Theory of Queues. Oxford University Press, New York (1962)
6. Gross, D., Harris, C.M.: Fundamentals of Queueing Theory. Wiley, New York (1998)
7. Bolch, G., Greiner, S., de Meer, H., Trivedi, S.: Queueing Networks and Markov Chains. Wiley, New

York (1998)
8. van Houdt, B., Lenin, R.B.: Delay distribution of (im)patient customers in a discrete time D-MAP/PH/1

queue with age-dependent service times. Queueing Syst. 45, 59–73 (2003)
9. McKendrick,A.G.:Applications ofmathematics tomedical problems. Proc. Edinb.Math. Soc. 44, 98–130

(1926)
10. Keyfitz, B.L., Keyfitz, N.: The McKendrick partial differential equation and its uses in epidemiology and

population study. Math. Comput. Model. 26, 1–9 (1997)
11. Webb,G.F.: Theory ofNonlinearAge-Dependent PopulationDynamics.MarcelDekker,NewYork (1985)
12. Gurtin,M.E.,Maccamy,R.C.: Non-linear age-dependent population dynamics. Arch. Ration.Mech.Anal.

54(3), 281–300 (1974)
13. Gurtin, M.E., Maccamy, R.C.: Some simple models for nonlinear age-dependent population dynamics.

Math. Biosci. 43, 199–211 (1979)
14. Cushing, J.M., Saleem, M.: A predator prey model with age structure. J. Math. Biol. 14, 231–250 (1982)
15. Busenberg, S., Iannelli, M.: Separable models in age-dependent population dynamics. J. Math. Biol. 22,

145–173 (1985)
16. Swart, J.H.: Stable controls in age-dependent population dynamics. Math. Biosci. 95, 53–63 (1989)
17. Rudnicki, R. (ed.):MathematicalModelling of PopulationDynamics, vol. 63.BanachCenter Publications,

Warszawa (2004)

123


	Anomalous Growth of Aging Populations
	Abstract
	1 Introduction
	2 Markov Chain Formulation
	3 Mean Field Approximation
	4 Truncated Death Probabilities
	4.1 Death After a Fixed Age

	5 Asymptotic Regimes
	5.1 Linear Regime: r > q
	5.2 Saturation Regime: r < q
	5.3 Critical Regime: r = q

	6 Discussion and Conclusion
	Acknowledgments
	Appendix: Exact Solution for a Fixed Death Age Model at the Critical Regime
	References




