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We investigate the first passage problem for multiple particles that diffuse towards a target, partially
adsorb there, and then desorb after a finite exponentially distributed residence time. We search for
the first time when m particles undergoing such reversible target-binding kinetics are found simul-
taneously on the target that may trigger an irreversible chemical reaction or a biophysical event.
Even if the particles are independent, the finite residence time on the target yields an intricate tem-
poral coupling between particles. We compute analytically the mean first passage time (MFPT) for
two independent particles by mapping the original problem to higher-dimensional surface-mediated
diffusion and solving the coupled partial differential equations. The respective effects of the adsorp-
tion and desorption rates on the MFPT are revealed and discussed. Published by AIP Publishing.
https://doi.org/10.1063/1.4996395

I. INTRODUCTION

The first-passage phenomena are ubiquitous in nature,
with examples ranging from foraging animals in ecology
to DNA replication processes in microbiology.1–4 The over-
whelming majority of former works have been focused on the
statistics of the first passage time (FPT) of a single diffusing
particle to a target.5–18 In particular, the mean FPT was com-
puted for various geometric settings and kinetics (see Ref. 19).
In many practical situations, however, an event (e.g., a reac-
tion) is triggered upon the arrival of several particles on the
target. For instance, the vesicular transmitter release in neu-
rons is initiated after the arrival of five calcium ions onto the
vesicle sensor,20–22 while the hemoglobin molecule is satu-
rated after the arrival of four oxygen molecules. If the diffusing
particles are independent, the knowledge of the FPT distribu-
tion for a single particle allows one to deduce the distribution
for the maximum of FPTs for many particles, yielding thus
the time of the triggered reaction (e.g., the vesicular trans-
mitter release).23 In practice, however, the particles that have
arrived on the target do not stay infinitely long but leave the
target after some random residence time. This is a typical fea-
ture of reversible reactions when the arrived particle forms
a metastable complex with the target molecule that can dis-
sociate later on. The dissociation or desorption mechanism
makes the first passage time problem highly nontrivial even
for independent particles. For instance, if just two particles
are needed to trigger the reaction, the first particle arrived on
the target can leave it before the arrival of the second parti-
cle. And before the first particle comes to the target again, the
second one can leave it, and so on. These random repetitive
asynchronized returns to the target have to be accounted for to
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obtain the first time when both particles are at the target and
thus an irreversible reaction or a biophysical event is triggered.
We emphasize that the FPT problem with reversible target-
binding kinetics is intrinsically a collective multi-particle phe-
nomenon, which is different from FPT problems for Markov
switching processes when a diffusing particle can randomly
switch between different internal states (e.g., with different dif-
fusivities or target affinities), see Refs. 24–26 and references
therein.

In this paper, we investigate the first passage time prob-
lem for “impatient” particles with reversible target-binding
kinetics. We derive an exact semi-analytical solution of this
problem for the simplified case of two particles undertaking
one-dimensional diffusion on the interval (0, L) (or between
parallel walls separated by a distance L, the lateral motion
being irrelevant). More precisely, we compute the mean first
time when two particles are simultaneously at the right end-
point (the target). The basic idea is to consider one-dimensional
diffusions of two independent particles as a surface-mediated
diffusion of a single particle inside a square. Although the latter
problem has been thoroughly investigated for several geomet-
ric configurations,27–33 the current setting is different and its
solution is not yet available. Inspired by former works, we
reduce the coupled partial differential equations (PDEs) for the
surface-mediated diffusion to a set of linear equations that can
be solved either explicitly (in some cases), or approximately, or
numerically. This semi-analytical solution allows us to study
how the mean first passage time (MFPT) depends on two major
parameters of the model: the adsorption rate (or the target reac-
tivity) and the desorption rate (or the mean residence time on
the target). Even for this simplified case, the solution is intricate
and the MFPT exhibits nontrivial behavior. Note that the the-
ory of many-body diffusion-limited reactions and catalytically
activated reactions also employs a mapping of the dynamics
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of multiple particles onto diffusion in a higher-dimensional
space with boundary conditions imposed on the surface of
the excluded volume to account for reactions upon particles’
encounters (see Refs. 34 and 35 and references therein). How-
ever, the reversible target-binding kinetics was ignored in these
studies.

The paper is organized as follows. In Sec. II, we formulate
the mathematical problem and recall the classical solution for
a single particle. These prerequisites will serve as a ground
for computing the MFPT for two “impatient” particles in
Sec. III. This section presents the main theoretical contribu-
tion of the paper. Section IV highlights the respective roles
of the finite reactivity and the desorption rate onto the MFPT.
Section V concludes the paper by summarizing main results
and discussing future perspectives.

II. MATHEMATICAL PROBLEM AND PREREQUISITES
A. General problem

We start this section by formulating the first passage prob-
lem for “impatient” particles with reversible target-binding
kinetics in a general situation. For a given Euclidean domain
Ω0 ⊂ Rd , let ΩT ⊂ Ω0 be a target such that its boundary ∂ΩT

does not intersect the boundary ∂Ω0 of the domain [Fig. 1(a)].
We consider an ordinary diffusion process insideΩ = Ω0\ΩT ,
started from a point x ∈ Ω, with a diffusion coefficient D. The
boundary ∂Ω0 is just an outer impermeable wall that keeps
the particles inside the domain by reflecting them back intoΩ.
In turn, when a particle arrives onto the target surface ∂ΩT , it
can be either adsorbed on the target or be reflected back intoΩ
and resume its diffusion. The probabilities of these two events
are determined by the adsorption rate (or the target reactiv-
ity) kon. Partial reflections can mimic an energetic barrier at
the target, partial reactivity due to heterogeneous distribution
of microscopic active/catalytic sites on the target, stochastic
gating, conformational incompatibility, recognition phase, or

another mechanism that may prevent an immediate adsorption
on the target.18,24,36–43 Once a particle is adsorbed on the tar-
get, it remains trapped for a random exponentially distributed
time τ, P{τ ≥ t} = e−koff t , with a desorption rate koff . After
this residence time, the particle is released from the target and
resumes its bulk diffusion, until the next arrival on the target,
and so on. In the language of reversible kinetics, the adsorption
on the target means a formation of a metastable complex that
can dissociate with the dissociation rate koff . Given that the
first absorption time on the target, the residence time on the
target, and the following repeated re-adsorption events are all
independent of each other, the first passage properties of such
a single “impatient” particle are characterized by the distribu-
tion Px {T ≥ t} of the FPT T to the target. The first-passage
problems for such partially reflecting diffusion have been quite
well investigated.44–48

In this paper, we are interested in the first time Tm when
m independent “impatient” particles that undergo partially
reflecting diffusion are simultaneously present on the target.
In the special case koff = 0, every particle that adsorbs on the
target remains there forever, and Tm is simply the time of the
first adsorption of the mth particle onto the target. In other
words, Tm = max{T 1, . . . , T (m)}, where T 1, . . . , T (m) are m
independent realizations of the first adsorption time to the tar-
get. As a consequence, the distribution of Tm is again reduced
to that of T,

Px1,...,xm {Tm ≥ t} = 1 −
m∏

i=1

(
1 − Pxi {T ≥ t}

)
, (1)

where xi are the starting positions of particles.
The situation is completely different when the desorption

rate koff is nonzero. Even if the particles are independent, the
finite residence times they spend on the target result in their
temporal coupling, and the distribution of Tm depends on the
first arrival times, the consecutive residence times, and the
excursion times in a very intricate way. Although one can still

FIG. 1. (a) The first passage time problem for two “impa-
tient” particles that start at x (red circle), diffuse in the
domain Ω = Ω0\ΩT , and search for a target ΩT (gray
disk). (b) One-dimensional diffusion of two particles on
the unit interval and its mapping to surface-mediated dif-
fusion in the unit square, with two fully reflecting edges
(N) and two partially absorbing edges (R). The target is
located at the corner (1,1). [(c) and (d)] Generated ran-
dom trajectories of two “impatient” particles on the unit
interval, started from x = 0.5, with κ = 1 and µ = 1, plot-
ted as a function of time (c) or in the square (d), with
color changing from dark blue at t = 0 to dark red at t = 2
(dimensionless units, with L = 1 and D = 1).



134112-3 Denis S. Grebenkov J. Chem. Phys. 147, 134112 (2017)

rely on the Markovian character and independence of each of
these steps, finding the distribution of Tm even for two particles
is a challenging problem that has not found yet an analytical
solution, to our knowledge. For these reasons, we restrict the
following analysis to the mean FPT for the particular case of
the one-dimensional diffusion.

B. One-dimensional problem

We consider one-dimensional diffusion of a particle on an
interval (0, L) of length L. We assume that the left endpoint x
= 0 is fully reflecting whereas the right endpoint x = L is a
partially absorbing target. For a single particle started from x
∈ (0, L), the distribution of the first passage timeT to the target,
S(t, x) = Px {T ≥ t}, also known as the survival probability up
to time t, satisfies the following PDEs:49

∂tS(t; x) − D∂2
x S(t; x) = 0 (0 < x < L), (2a)

∂xS(t; x) = 0 (x = 0), (2b)

D∂xS(t; x) + konS(t; x) = 0 (x = L), (2c)

subject to the initial condition S(0; x) = 1. This problem can
be easily solved by integrating the spectral expansion of the
propagator,

S(t; x) =
∞∑

n=0

e−Dtα2
n/L

2
un(x)

L∫
0

dx′ un(x′), (3)

where α2
n/L

2 and un(x) are the eigenvalues and eigenfunctions
of the Laplace operator −∂2

x on (0, L) with Neumann-Robin
boundary conditions at endpoints 0 and L, respectively,

un(x) =
√

2/L en cos(αnx/L) (n = 0, 1, 2, . . .). (4)

Here αn are solutions of the equation

αn sin αn = κ cos αn (5)

and

en =

(
κ + α2

n

κ2 + κ + α2
n

)1/2

(6)

are the normalization constants, with

κ =
konL

D
(7)

being the dimensionless reactivity. One can show that for any
n = 0, 1, 2, . . . , there is only one solution of Eq. (5) on the
interval [πn, π(n + 1/2)], the endpoints of this interval cor-
responding to the Neumann (κ = 0) and Dirichlet (κ = ∞)
limiting cases, respectively. Using the identities

sin αn =
κ(−1)n√
α2

n + κ2
, cos αn =

αn(−1)n√
α2

n + κ2
, (8)

one writes the survival probability from Eq. (3) as

S(t; x) = 2
∞∑

n=0

e−Dtα2
n/L

2 (−1)nκ

√
κ2 + α2

n

αn(κ2 + κ + α2
n)

cos(αnx/L). (9)

From the survival probability, one also obtains the MFPT,

〈T 〉x =
∞∫

0

dt t
(
−∂tS(t; x)

)
=

L2 − x2

2D
+

L2

κD
. (10)

The first term represents the MFPT to a fully absorbing target,
whereas the second term accounts for eventual reflections on
a partially absorbing target.

III. SEMI-ANALYTICAL SOLUTION

The trajectories of two independent particles on the inter-
val (0, L) can be seen as two coordinates of a single par-
ticle undergoing a surface-mediated diffusion in the square
(0, L) × (0, L). The two edges of the square, {0} × (0, L) and
(0, L) × {0}, are fully reflecting whereas the two other edges
are partially absorbing [Fig. 1(b)]. When such a particle is
adsorbed on one of partially absorbing edges, it performs
one-dimensional diffusion along this edge. This represents the
situation when one of two original particles is adsorbed (and
thus does not move), while the other keeps diffusing. Dif-
fusion along the edge continues for a random exponentially
distributed time τ (controlled by the desorption rate koff ) and
then desorbs from the edge and resumes its two-dimensional
diffusion in the square. However, before the desorption event,
the adsorbed particle can manage to reach the partially absorb-
ing endpoint of the edge [i.e., to reach the corner (L, L) of the
square]. The adsorption at the corner corresponds precisely to
the event when two original particles are present at the target.
In other words, we consider a particle started from a point (x,y)
inside the square Ω and search for the MFPT t(x,y) to the cor-
ner (L, L) of the square for a surface-mediated diffusion with
partially reactive boundary characterized by dimensionless
reactivity κ and desorption rate koff .

Adapting the technique developed in Refs. 27–30, we also
introduce two MFPTs t1(x) and t2(y) to the corner (L, L) for the
case when the particle starts on the partially absorbing edges.
These MFPTs satisfy the coupled PDEs with appropriate
boundary conditions,

D(∂2
x + ∂2

y )t(x, y) = −1, (11a)

D∂2
x t1(x) + koff (t(x, L) − t1(x)) = −1, (11b)

D∂2
y t2(y) + koff (t(L, y) − t2(y)) = −1, (11c)

(∂xt(x, y))x=0 = 0, (11d)

(∂yt(x, y))y=0 = 0, (11e)

L(∂xt(x, y))x=L − κ(t2(y) − t(L, y)) = 0, (11f)

L(∂yt(x, y))y=L − κ(t1(x) − t(x, L)) = 0, (11g)

L(∂xt1(x))x=L + κt1(L) = 0, (11h)

L(∂yt2(x))y=L + κt2(L) = 0, (11i)

(∂xt1)x=0 = 0, (11j)

(∂yt2)x=0 = 0. (11k)

Equation (11a) is the standard Poisson equation for the MFPT
in the square. The second and third Poisson equations on two
partially absorbing edges account for the desorption mech-
anism controlled by the desorption rate koff . The Neumann
boundary conditions [(11d), (11e), (11j), and (11k)] ensure
reflections at two reflecting edges and at the reflecting end-
point of two other edges. Equations (11f) and (11g) describe
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the exchange between the bulk and the partially absorbing
edges. Finally, the Robin boundary conditions (11h) and (11i)
mimic partial adsorptions at the endpoints of the two edges.

First, we aim to solve Eq. (11b) with boundary conditions
(11h) and (11j). For this purpose, we rewrite this equation as

(µ − L2∂2
x )t1(x) =

L2

D
+ µ t(x, L), (12)

with

µ =
koff L2

D
, (13)

and use the eigenfunctions in Eq. (4) of the Laplace opera-
tor −∂2

x on (0, L) with Neumann-Robin boundary conditions
at endpoints 0 and L. This is a natural choice to ensure the
boundary conditions (11h) and (11j). Expanding t1(x) onto
the complete basis of these eigenfunctions,

t1(x) =
L2

D

∞∑
n=0

bn cos(αnx/L), (14)

substituting this expansion into Eq. (12), multiplying by
cos(αnx/L), and integrating over (0, L), one expresses the
coefficients bn as

bn =
2e2

n

µ + α2
n

1∫
0

dx cos(αnx)
(
1 +

D

L2
µ t(xL, L)

)
. (15)

Next, we search for the MFPT t(x,y) in a form

t(x, y) =
(L2 − x2) + (L2 − y2)

4D

+
L2

D

∞∑
n=0

cn

{
cos(αnx/L) cosh(αny/L)

+ cosh(αnx/L) cos(αny/L)
}
, (16)

where αn are determined as solutions of Eq. (5). The first
term provides the particular solution of the inhomogeneous
equation (11a), whereas the sum is a general solution of the
homogeneous (Laplace) equation D∆t = 0 that satisfies Eqs.
(11d) and (11e). The unknown coefficients cn will be chosen
to satisfy the remaining conditions. Note that we set the same
coefficient in front of two terms in the sum due to the symmetry
of the problem: t(x,y) = t(y,x).

Substituting t(x,L) from Eq. (16) into Eq. (15), one gets

bn =
2e2

n

µ + α2
n

{
sin αn

αn
+ µ

sin αn − αn cos αn

2α3
n

+ cnµ
cosh αn

2e2
n

+ µ
∞∑

k=0

ck cos αk
αk sinh αk cos αn + αn sin αn cosh αk

α2
k + α2

n




,

(17)

where we used the identity

1∫
0

dx cos(αx) cosh(βx) =
β sinh β cos α + α sin α cosh β

β2 + α2
.

(18)

Finally, we substitute t(x, y) from Eq. (16) and t1(x) from
Eq. (14) into Eq. (11g) to get

κt1(x) = (L∂yt + κt)y=L

= −
L2

2D
+ κ

L2 − x2

4D

+
L2

D

∞∑
n=0

cn cos(αnx/L)
(
αn sinh αn + κ cosh αn

)
,

(19)

where we used Eq. (5) to check that the contribution from the
last term in Eq. (16) vanishes. We multiply the above relation
by cos(αnx/L) and integrate over (0, L) to get

κbn = e2
n

(
−

sin αn

αn
+

sin αn − αn cos αn

α3
n

)
+ cn

(
αn sinh αn + κ cosh αn

)
. (20)

From Eqs. (17) and (20), one can express the coefficients cn

cne−2
n α2

n cosh αn

(
κ + (µ + α2

n)
tanh αn

αn

)
− 2κµ

∞∑
k=0

ck cos αk
αk sinh αk cos αn + αn sin αn cosh αk

α2
k + α2

n

=
sin αn

αn
(µ + 2α2

n + κ). (21)

Using Eqs. (5) and (8) and setting

c̃n = cn(κ cosh αn + αn sinh αn) cos αn, (22)

one can rewrite Eq. (21) as

c̃n(κ2 + κ + α2
n)

(
1 +

µ sinh αn

αn(κ cosh αn + αn sinh αn)

)
− 2κµ

∞∑
k=0

c̃k

α2
k + α2

n

=
κ

α2
n

(µ + 2α2
n + κ). (23)

This equation should be satisfied for any n = 0, 1, 2, . . .. The
solution of this infinite set of linear equations yields the coef-
ficients c̃n and thus cn that fully determine the MFPT t(x, y)
via Eq. (16). This is our exact semi-analytical solution of the
problem. Note that Eq. (11f) is automatically satisfied due to
the symmetry.

IV. DISCUSSION

In this section, we study the dependence of the MFPT on
two major parameters of the model: the dimensionless reac-
tivity κ [given by Eq. (7)] and the dimensionless desorption
rate µ [given by Eq. (13)]. In general, the set of linear equa-
tions in Eq. (23) of linear equations on c̃n can be truncated
and solved numerically by inverting the underlying matrix.
The fast decay of the coefficients c̃n with n allows one to get
accurate results with moderate truncation sizes and thus very
rapidly. In the following illustrations, the numerical inversion
was performed for the truncated system with 1000 equations
but much smaller truncation sizes could be used. In Subsec-
tions IV A–IV D, we discuss two exact solutions for µ = 0
(Sec. IV A) and for κ = ∞ (Sec. IV B), an explicit approxi-
mate solution for moderate µ (Sec. IV C) and the asymptotic
behavior for large µ and small κ (Sec. IV D).
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FIG. 2. The ratio T̃/T as a function of κ and µ.

Once the solution is found, we can also calculate the
global MFPT by averaging over the starting points. One can
consider either two particles started uniformly and indepen-
dently, or two particles started from the same position that is
uniformly distributed. We define respectively

T̃ =
1

L2

L∫
0

dx

L∫
0

dy t(x, y), (24a)

T =
1
L

L∫
0

dx t(x, x). (24b)

Substituting Eq. (16) into these expressions, we get

T̃ =
L2

D
*
,

1
3

+
∞∑

n=0

2c̃n

α3
n

κ sinh αn

κ cosh αn + αn sinh αn

+
-

, (25a)

T =
L2

D
*
,

1
3

+
∞∑

n=0

c̃n

α2
n

+
-

. (25b)

FIG. 3. The global MFPT T as a function of κ and µ.

Figure 2 shows that T̃ and T are very close to each other for a
broad range of parameters κ and µ. We will thus focus on the
simpler expression (25b).

Figure 3 shows the global MFPT T as a function of κ and
µ. One can note that (i) as κ → ∞, T approaches a constant
that is independent of µ; and (ii) T diverges as µ→ ∞ or/and
κ → 0. In Subsections IV A—IV D, we investigate different
limiting cases.

A. Uncoupled particles (µ = 0)

When µ = 0, the nondiagonal terms in Eq. (23) vanish,
and its solution is

c̃n =
κ(2α2

n + κ)

α2
n(κ2 + κ + α2

n)
. (26)

As a consequence, we get the exact explicit MFPT,

t(x, y) =
2L2 − x2 − y2

4D
+

L2

D

∞∑
n=0

κ(2α2
n + κ)

α2
n(κ2 + κ + α2

n) cos αn

cos(αnx/L) cosh(αny/L) + cos(αny/L) cosh(αnx/L)
κ cosh αn + αn sinh αn

. (27)

It is instructive to compare this solution to the conven-
tional way of obtaining the MFPT for uncoupled particles
which relies on Eq. (1), into which the survival probability
from Eq. (9) is substituted,

t(x, y) =

∞∫
0

dt t
(
−∂tPx,y{T2 ≥ t}

)
=

2L2

D

∞∑
n=0

Cn

α2
n

(
cos(αnx/L) + cos(αny/L)

)
−

4L2

D

∞∑
n1,n2=0

Cn1 Cn2

α2
n1

+ α2
n2

cos(αn1 x/L) cos(αn2 y/L),

(28)

where

Cn =
(−1)nκ

√
α2

n + κ2

αn(α2
n + κ + κ2)

(29)

are the coefficient in Eq. (9). The two representations in
Eqs. (27) and (28) are equivalent, though our formula (27) is

simpler, as it does not involve the double sum. We stress that the
dependence of the MFPT on κ is not explicit and highly non-
trivial even for uncoupled particles. In turn, the global MFPT
from Eq. (25b),

T =
L2

D
*
,

1
3

+
∞∑

n=0

κ(2α2
n + κ)

α4
n(κ2 + κ + α2

n)
+
-

, (30)

can be computed explicitly using the identity (see the
Appendix)

∞∑
k=0

1

z2 + α2
k

=
(1 + κ) sinh z + z cosh z
2z(z sinh z + κ cosh z)

. (31)

After simplifications, one gets

T =
L2

2D

(
1 +

3
κ

)
. (32)

For comparison, the global MFPT for a single particle, which
is obtained by integrating Eq. (10), is L2

3D (1 + 3
κ ).
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B. Fully absorbing target (κ = ∞)

The division of Eq. (23) by κ2 removes again the non-
diagonal terms in the limit κ → ∞, yielding an explicit
solution

c̃n =
1

α2
n

(33)

from which

cn =
(−1)n

α3
n cosh αn

, (34)

where αn = π(n + 1/2). As expected, when the target is per-
fectly absorbing, a particle released after some residence time
is immediately re-adsorbed, so that the result does not depend
on µ. We then get

t(x, y) =
2L2 − x2 − y2

4D
+

L2

D

∞∑
n=0

(−1)n

α3
n

cos(αnx/L) cosh(αny/L) + cos(αny/L) cosh(αnx/L)
cosh αn

. (35)

We also obtain the global MFPT,

T =
L2

D

(1
3

+
∞∑

n=0

1

α4
n

)
=

L2

2D
. (36)

C. General approximate solution

In general, finding the exact explicit solution of Eq. (23)
remains problematic. When µ is not too large, an approximate
solution can be obtained within “a diagonal approximation”
that was shown to be efficient for finding the MFPT for other
surface-mediated diffusions.27–30 This approximation consists
in neglecting all non-diagonal elements in the matrix form
of these linear equations. A straightforward application of
this approximation to Eq. (23) would yield a rather com-
plicated approximation of a limited practical use. To get a
more convenient approximation, we use the identity (see the
Appendix),
∞∑

n=0

1

(z2 + α2
n)(κ2 + κ + α2

n)
=

sinh z
2zκ(z sinh z + κ cosh z)

. (37)

Denoting
ĉn = c̃n(κ2 + κ + α2

n), (38)

Eq. (23) can be rewritten as

ĉn − 2κµ
∞∑

k=0

ĉk − ĉn

(α2
n + α2

k)(κ2 + κ + α2
k)
=

κ

α2
n

(µ + 2α2
n + κ).

(39)

The diagonal approximation applied to this form of linear
equations consists in neglecting the sum that yields a simple
approximate solution

c̃n ≈
κ(µ + 2α2

n + κ)

α2
n(κ2 + κ + α2

n)
. (40)

Substituting this approximation into Eq. (25b) and calculating
the series by using Eq. (37), we get an explicit approximation
for the global MFPT,

T app =
L2

D
(κ + 3)(µ + 3κ)

6κ2

=
L2

2D

(
1 +

3D
Lkon

) (
1 +

koff L
3kon

)
. (41)

This approximation is one of the main practical results of the
paper that illustrates the influence of the reversible binding
to the target onto the MFPT through the second factor [note
that the first factor is the MFPT for uncoupled particles, see
Eq. (32)]. The approximation becomes exact in the limit µ→ 0
[see Eq. (32)] and in the limit κ → ∞ [see Eq. (36)].

Figure 4 illustrates the quality of this approximation. As
expected, the approximation is very accurate for small µ. Even
for large µ, one also gets accurate results whenever κ � 1 or
κ � 1. The worst situation corresponds to large µ and κ ∼ 1.
Note also that T app turns out to be the upper bound for T.

D. Asymptotic behavior for large µ and small κ

Given that the regime of large µ is not easily accessible
from the analysis of Eq. (23), we provide below some prob-
abilistic arguments to estimate the MFPT. Since the starting
point does not matter in this regime, we do not distinguish
MFPT and global MFPT. More precisely, we consider the
asymptotic behavior for large µ and small κ. In this case,
the mean time of each bulk excursion for each particle is
large [being of the order of L2/(Dκ), see Eq. (10)], whereas
the mean residence time on the target, 1/koff , is small. Let
us consider the history of arrivals of one pre-selected par-
ticle on the target. The second particle needs to arrive on
the target during short residence periods of the first particle.
The probability of finding the second particle at the target is
approximately the ratio of the residence and excursion times,
i.e., κ/µ. On average, one needs approximately 1/(κ/µ) trials
for this rare event to occur. Since the duration of one trial is
dominated by the excursion time, the MFPT is of the order

FIG. 4. The global MFPT T divided by its approximation T app from Eq. (41)
as a function of κ and µ.
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of (µ/κ) L2/(Dκ). Alternatively, one could select the second
particle and estimate the probability of arrivals of the first par-
ticle. These two equivalent considerations halve the MFPT,
yielding

T '
L2

D
µ

2κ2
(µ � 1, κ � 1). (42)

Note that the approximation in Eq. (41) predicts the correct
asymptotic behavior µ/(2κ2) for large µ and small κ, and its
agrees well with the exact solution (see Fig. 4).

V. CONCLUSIONS

We considered the first passage time problem for mul-
tiple “impatient” particles that search for a target, partially
adsorb on the target, and then desorb after a random resi-
dence time due to reversible target-binding kinetics. We were
interested in characterizing the first time when m independent
diffusing particles are simultaneously present at the target.
The desorption mechanism leads to intricate temporal cou-
pling even between independent particles. In order to reveal
the respective roles of the finite reactivity of the target (kon)
and the desorption rate (koff ) onto the mean FPT, we simpli-
fied as much as possible the geometric domain, focusing on
two independent particles undergoing one-dimensional diffu-
sion on the interval (or between parallel walls). Mapping this
problem onto surface-mediated diffusion in the square, we
managed to obtain a semi-analytical solution of the underlying
coupled PDEs. The obtained formula for the MFPT exhibits
an analytical dependence on the starting point but requires a
numerical solution of the system of linear equations on the
coefficients. The fast decay of the coefficients allows one to
get very accurate results with moderate truncation sizes. More-
over, for moderate desorption rates, we derived an explicit
approximate solution for the MFPT. In particular, the approx-
imation in Eq. (41) for the global MFPT helps to grasp the
respective roles of the two major parameters of the model. We
also showed that small reactivity or large desorption rate can
increase the MFPT by many orders of magnitude, playing thus
an important role in the analysis of chemical and biochemical
reactions that involve several reactants. The reversible binding
to the target (accounted for through the desorption rate koff )
had been largely ignored in former studies of the MFPT.

The proposed derivation can potentially be extended to
many particles but the analysis becomes substantially more
cumbersome. For instance, one-dimensional diffusion of three
independent particles can be mapped onto surface-mediated
diffusion in a cube, which has three reflecting and three par-
tially absorbing faces. Once a particle is adsorbed on such a
face, it starts two-dimensional diffusion on that face, which
has two reflecting and two partially absorbing edges. One can
write the coupled PDEs for seven MFPTs to the corner (L, L,
L): one for the starting point in the cube, three for the starting
point in each of three faces, and three for the starting point in
each of three edges. Although the solution seems to be feasi-
ble, the derivation is rather involved. An extension to a larger
number of particles would result in even a larger system of
coupled PDEs.

The main idea of mapping the first passage time prob-
lem for multiple particles onto surface-mediated diffusion is

not limited to one-dimensional diffusion considered in this
paper. For instance, the trajectories of two independent parti-
cles diffusing in a three-dimensional domain Ω can be con-
sidered as coordinates of surface-mediated diffusion in the
six-dimensional domain Ω × Ω. While chances of getting
the semi-analytical solution of this problem remain elusive
in general, our results can potentially be extended to rotation-
invariant domains. This problem will be addressed in a future
work.
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APPENDIX: DERIVATION OF SUMMATION IDENTITIES

We briefly discuss the derivation of the identities (31)
and (37) that we used to compute the global MFPT and to
get an approximate solution for the coefficients c̃n. In gen-
eral, such identities can be derived as partial fraction expan-
sions of appropriate meromorphic functions over their poles
(Mittag-Leffler’s theorem in complex analysis). For the con-
sidered model of one-dimensional diffusion, a simpler and
straightforward derivation comes from the Laplace transfor-
mation of the survival probability. It is elementary to derive
the solution of the Laplace-transformed diffusion equation,
(p − D∂2

x )S̃(p, x) = 1 for 0 < x < 1, subject to the boundary
conditions (2b) and (2c),

S̃(p; x) =
1
p

(
1 −

κ cosh(x
√

p
D )

κ cosh(L
√

p
D ) + L

√
p
D sinh(L

√
p
D )

)
. (A1)

The comparison of this relation to the Laplace transform of
the survival probability in Eq. (9) yields the identity

∞∑
n=0

1

(κ2 + κ + α2
n)(α2

n + z2)

cos(αnx)
cos αn

=
1

2z2κ

(
1 −

κ cosh(xz)
κ cosh z + z sinh z

)
, (A2)

where we set z = L
√

p/D and L = 1, and used Eq. (8). This
identity is valid for any positive z and κ, and any x between
0 and 1. Setting x = 1, one gets immediately Eq. (37). Taking
twice the derivative with respect to x at x = 1 and setting z → 0,
one finds

∞∑
n=0

1

κ2 + κ + α2
n
=

1
2κ

. (A3)

Finally, rewriting the first factor in the left-hand side of Eq.
(A2) as the sum of two partial fractions, setting again x = 1,
and using Eq. (A3), one derives Eq. (31).
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