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The purpose of this paper is twofold. First, we provide a concise introduction to the generalized
method of separation of variables for solving diffusion problems in canonical domains beyond con-
ventional arrays of spheres. Second, as an important example of its application in the theory of
diffusion-influenced reactions, we present an exact solution of the axially symmetric problem on
diffusive competition in an array of two active particles (including Janus dumbbells) constructed
of a prolate spheroid and a sphere. In particular, we investigate how the reaction rate depends on
sizes of active particles, spheroid aspect ratio, particles’ surface reactivity, and distance between their
centers. Published by AIP Publishing. https://doi.org/10.1063/1.5006544

I. INTRODUCTION

The year 2017 marks the centenary of the seminal Smolu-
chowski paper which became the cornerstone of the mod-
ern theory of diffusion-influenced reactions.1,2 In particu-
lar, the Smoluchowski theory concerns the pseudo-first-order
irreversible bulk contact reactions

A + B
k
−→ A + P (1)

between point-like diffusing reactants (reactive particles) B
and static sinks A of finite size and infinite capacity (e.g., cat-
alytic germs) immersed in the inert bulk liquid, resulting in
inert products P (these reactions are often termed as the dif-
fusion trapping model).3,4 When the characteristic relaxation
time for diffusion processes occurring in the system is small
enough to ignore the transient effects, the kinetics is essen-
tially determined by the observed reaction rate constant (or
steady-state reaction rate coefficient) k.2 In the particular case
of stationary diffusion of B particles towards a single perfectly
absorbing spherical sink of radius R, the Smoluchowski rate
constant is

kS = 4πRD, (2)

where D is the translational diffusion coefficient of reactants B.
The scaling of the reaction rate with the linear size of the sink is
a remarkable feature of diffusion-controlled reactions, which
contradicts the intuitively expected scaling with the area of the
sink (given that the reaction occurs at the surface).2 Note that
Eq. (2) is only valid when the surface reaction rate constant is
much larger than the characteristic velocity of diffusion D/R.

a)Electronic mail: sergtray@mail.ru
b)Electronic mail: denis.grebenkov@polytechnique.edu
c)ISCP: International Joint Research Unit–UMI 2615 CNRS/IUM/IITP RAS/

Steklov MI RAS/Skoltech/HSE, Moscow, Russian Federation.

In the following, we will consider a general situation with an
arbitrary surface reaction rate constant.

Diffusion-influenced reactions are widely encountered in
natural and technological processes, playing a significant role
in a broad and diversified range of physical, chemical, and
biological systems.2,4 As a rule, these systems comprise a
mixture of particles or obstacles varying in sizes, shapes,
and chemical activities on their surfaces. The mathematical
description of diffusion-influenced reactions is based on the
diffusion equation with respect to local concentration nB (x)
of diffusing solute particles B in a three-dimensional domain
outside the array of static particles A under appropriate bound-
ary conditions that account for the surface chemical activity.
One can distinguish particles by the surface chemical activity
as inert, partially absorbing, ideally absorbing (B disappears
immediately when touching A), inert with some active sites,
permeable, partially permeable, etc. In general, an active parti-
cle (AP) can be defined as a pair {Ω(x0), κ(s)}, whereΩ(x0) is
a three-dimensional domain associated with the point x0 ∈ R3

and represents a particle of sort A and κ(s) (with s ∈ ∂Ω)
stands for the intrinsic reaction rate coefficient for the absorp-
tion process (or surface reactivity) on the particle surface
denoted by ∂Ω. In general κ(s): ∂Ω → [0, ∞) is a piece-
wise continuous function on ∂Ω. For instance, {BR(x0), 0}
is an inert spherical obstacle of radius R centered at x0,
whereas {BR(x0), ∞} is an ideal spherical sink. Hereafter
BR(x0) = {x ∈ R3 : ‖x − x0‖ < R} is an open ball of radius R
and center x0, where ‖y � z‖ stands for the distance between
points y, z ∈ R3. The primary task of the theory is the derivation
of the pseudo-first-order reaction rate constant k for a given
array of APs.

In contrast to the Smoluchowski solution for a single
spherical particle, the diffusion problem for an array of two or
more APs is much more involved. Indeed, the concentration
nB(x) in the vicinity of any AP is affected by the presence of
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all other APs from a given array. This effect is often called
the diffusive interaction (DI), in analogy to the hydrodynam-
ics interaction for many particle systems in Stokes flow.5 The
literature also reveals other terms for this phenomenon, e.g.,
competitive interaction (or just competition)6,7 and diffusion
screening, in analogy with electrostatic screening.8 From the
mathematical point of view, DI effects are stipulated by the
disconnectedness of the boundary, consisting of the reaction
surfaces formed by the given array of APs.

From both theoretical and practical points of view, the
diffusion-influenced reactions on two APs are of special cur-
rent interest. In particular, the problem of two ideally or
partially absorbing spherical APs has been a subject of long
standing interest among theoreticians (see, e.g., Refs. 2 and 3).
Different methods have been used to address this problem.
In the scope of the method of orthogonal curvilinear coor-
dinates,9 the bispherical coordinate system was perhaps the
most widely used for handling different problems of poten-
tial theory and related topics in applications with two spheres.
Samson and Deutch pioneered the application of bispherical
coordinates to the exact solution for the diffusion-controlled
rate into a pair of reacting spherical sinks “. . . in order to pro-
vide a basis for comparison to the more general theories.”10

Later many authors used the bispherical coordinates to obtain
the analytical solutions for diffusion-influenced reactions on
two spherical APs.7,11–13 In particular, the analysis of the DI
between two burning or evaporating fuel drops with differ-
ent sizes and surface activities was accomplished.14–16 Until
now, the method of bispherical coordinates is still widely used
to describe diffusion reaction kinetics on the surface of geo-
metrically and chemically axially symmetric Janus dumbbell
particles consisting of two spherical APs.17–19 In addition, a
numerical investigation of the diffusion-controlled reaction
between diffusing charged particles B and a system of two
oppositely charged static spherical sinks has been successfully
performed.20

In spite of these advances, the method of bispherical coor-
dinates has several disadvantages (see Appendix for details).
In particular, for almost touching spheres or spheres in contact
(dumbbells), solutions contain secular terms and, therefore,
the problem becomes singularly perturbed. To avoid this dif-
ficulty, several regularization procedures have been proposed
(see, e.g., Refs. 21 and 22 and references therein), whereas
the degenerate bispherical coordinate system may be used to
describe the array of touching spheres.9 We emphasize how-
ever that the bispherical coordinate system is only suitable for
two spherical APs.

To overcome these limitations, in particular, to deal with
arrays comprising many spherical APs, other methods have
been proposed. For instance, diffusion interactions in an array
of two non-spherical APs were studied by a modified image
method elaborated by Labowsky23 and much later by a bound-
ary collocation method by Labowsky and Fahmy.24 Recently
McCammon et al. have investigated diffusion-influenced reac-
tions on an array of several sinks by solving numerically
the Laplace equation by means of a finite element method.25

To describe diffusion-controlled reactions on a finite num-
ber of ideal spherical sinks, Beenakker and Ross applied the
induced sources method26 which originally was developed for

problems on hydrodynamics interactions in the Stokes flow.
The method of irreducible Cartesian tensors has been sug-
gested by Traytak for solving similar problems14 (note that
these two approaches appear to be equivalent since both lead to
the same second kind infinite set of linear algebraic equations
with respect to unknown coefficients). Many other theoretical
methods such as variational estimates and perturbative analysis
have been employed to study diffusion among static APs.4,27–35

Generalization of the Wilemski-Fixman-Weiss decoupling
approximation elaborated by Lee et al. deserves special atten-
tion as a very powerful and general technique to investigate DI
in arrays containing multiple APs of different sizes, shapes,
and reactivities.36 Finally, Monte Carlo simulations have been
often used for computing the reaction rate and other diffusion
characteristics in arrays of spheres.37–39

In this paper, we advocate for another method that was
originally developed for diffraction problems and called the
generalized method of separation of variables (GMSV).40 The
GMSV should not be confused with “the method of gen-
eralized separation of variables” proposed by Polyanin and
Zhurov.79 For the axially symmetric DI problems, a particular
version of this method has been employed by Goodrich in 1967
to find the steady-state diffusion field in the neighborhood of
two identical ideal spherical sinks (drops).41 Later Mattern and
Felderhof treated the more general case of diffusion-controlled
reactions in a random array of spherical sinks by means of
the GMSV.42 Much later Traytak and Tachiya studied the DI
between two sinks trapping charged diffusing reactants B in an
external electric field E with the help of the GMSV for the mod-
ified Helmholtz equation.43 It is clear that the general formulas
obtained there for the reaction rates lead to the corresponding
formulas in the case of pure diffusion as E→0. By means of the
axially symmetric GMSV for solid spherical harmonics, the
free energy change of the electron transfer reaction, including
the effect of an external electric field, was calculated rigor-
ously.44 Using the same approach, Tsao obtained the reaction
rates for diffusion uptake of B particles by two spherical APs
of different reactivity and size.45 Then Strieder and co-authors
used the GMSV to study reactions on two different spherical
sinks and a spherical source and sink.6,46 It is worth noting
that the latter case of DI between the source and sink is of spe-
cial interest for applications. Within the scope of the GMSV,
Felderhof used so-called addition theorems for arbitrary solid
spherical harmonics to study diffusion-controlled reactions in
a regular array of spheres.47 Galanti et al. applied the most
general form of the GMSV for computing the reaction rate in
an array of non-overlapping spherical APs with arbitrary sizes,
locations, and chemical activities.48

All these former studies involving the GMSV have been
exclusively focused on various arrays of spherical APs. In
the past years, however, considerable progress has been made
towards micro- and nanoparticle syntheses including a great
variety of building blocks of different shapes, compositions,
patterns, and functionalities.49,50 For example, recent inves-
tigations of artificial antenna systems have awakened keen
interest of researchers (see, e.g., Refs. 51 and 52 and refer-
ences therein). A typical antenna system may be modeled as
an immobile target (or a specific site) which is attached to a
straight one-dimensional non-reactive rod of some finite length
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embedded in the three-dimensional space. Although such an
antenna might be approximated as an array of spheres, a more
natural geometric model for the antenna system is an active
sphere in contact with a non-reactive prolate spheroid of large
enough aspect ratio. In addition, many useful effects of Janus
particles (e.g., their self-propulsion, see Ref. 53 and references
therein) have inspired studies of heteronuclear sticky Janus
dumbbells and Janus prolate spheroidal APs.54–58 While trap-
ping of point-like diffusing particles B by an isolated ideally or
partially absorbing spheroidal AP was well investigated,59–62

the case of an array of two “sphere-prolate spheroid” APs has
remained unexplored.

Bearing in mind the growing interest in the analysis of
diffusion-influenced reactions in arrays of non-spherical APs,
we have selected the “sphere-prolate spheroid” geometric con-
figuration as an important example to illustrate how the GMSV
can be used for generic canonical domains. The main objec-
tive of our study is to familiarize the readers with this rather
powerful general technique and some peculiarities related to
its implementation and application to a number of problems
often arising in the theory of diffusion-influenced reactions.
We present the semi-analytical solution of the steady-state
diffusion problem for an array of two APs: a sphere and a
prolate spheroid (whose principal axis goes through the center
of the sphere). In particular, this solution allows us to inves-
tigate the effect of shape and surface reactivity on the overall
reaction rate. The obtained result may be used to construct
models of diffusion-controlled reactions on axially symmetric
microbodies.

This paper is organized as follows. In Sec. II, the mathe-
matical model is formulated in terms of the boundary value
problem for the steady-state diffusion equation. The basic
description of the generalized method of separation of vari-
ables for canonical domains is given in Sec. III. Section IV
contains a detailed solution of the axially symmetric problem
on diffusion competition between two active particles of the
“sphere-prolate spheroid” array. Section V presents the anal-
ysis of the screening effect of one active particle on the other
and of the respective roles of the shape and surface reactivity.
In particular, the cases of both ideally absorbing sinks and one
absorbing/one reflecting particle are discussed. We also con-
sider the case of Janus dumbbells which consist of a touching
sphere and prolate spheroid. This is followed by the conclu-
sions in Sec. VI. Appendix summarizes the expressions for the
reaction rate in the particular case of an array comprising two
spherical active particles.

II. STATEMENT OF THE PROBLEM

As already noted, we consider here the steady-state dif-
fusion of point-like particles B towards an axially symmet-
ric array of two static non-overlapping APs {Ωi(xi

0), κi(si)}:
Ω1(x1

0) ≡ BR(x1
0) is the ball of radius R, centered at the point

x1
0 = (0, 0,−L), and Ω2(x2

0) is a prolate spheroid with the
minor semi-axis a and the major semi-axis b (b > a), cen-
tered at the origin x2

0 = O = (0, 0, 0). By construction, the
centers of two APs are located on the z axis and separated
by distance L ≥ R + b (see Fig. 1). In this study, we treat
spheroidal APs of arbitrary aspect ratio ε = b/a ∈ (1, ∞),

FIG. 1. Schematic view of two active particles: (1) a sphere of radius R and
(2) a prolate spheroid with the minor semi-axis a and the major semi-axis b.
The major axis of the spheroid goes through the center of the sphere (axial
symmetry). The distance between centers of two APs is L.

ranging between the limiting cases of spheres (ε = 1) and
needles (ε → ∞). The reaction in (1) occurs when reac-
tants B reach the total reaction surface ∂Ω� = ∂Ω1 ∪ ∂Ω2,
and we assume that κi(si) = κi = const anywhere on each
surface si ∈ ∂Ωi. Although for our illustrative purposes we
formulate the problem for the particular case of two “sphere-
prolate spheroid” APs, this formulation has a straightforward
extension to any finite number of arbitrary non-overlapping
canonical domains (see Sec. III).

In mathematical terms, we are interested in finding the
steady-state local concentration field of diffusing reactants
B, i.e., a function nB(x): Ω�→ [0, ∞), where the domain
Ω− =R3\(Ω1∪Ω2) is the exterior of the above two APs. From
the geometrical point of view, Ω� is a spatial domain in R3

with disconnected boundary ∂Ω� consisting of two connected
components ∂Ω1 and ∂Ω2 such that ∂Ω1 ∩ ∂Ω2 = Ø.

The desired field nB(x) obeys the Laplace equation

∇2nB = 0 in Ω
− (3)

under appropriate boundary conditions.

(a) In the general partially diffusion-controlled regime
(0 < κi <∞), the Robin boundary condition is
imposed,2,63,64

− (D∂nnB)|∂Ωi = κinB |∂Ωi , (4)

where ∂n is the normal derivative at the ith AP boundary
∂Ωi directed outwards the domainΩ� and D is the trans-
lational diffusion coefficient. Condition (4) means that
the local diffusive flux towards the boundary (the left-
hand side) is equal to the “reaction” flux at the boundary
(the right-hand side).

(b) For the fully diffusion-controlled regime (κi →∞), the
boundary condition (4) turns into the Dirichlet one as the
reaction occurs when a reactant B reaches the surface,

nB |∂Ωi = 0. (5)

This condition describes an ideal sink when solute parti-
cles B react instantaneously after contact with any point
of the AP surface.
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(c) In the case of an inert particle (κi = 0), we deal with the
Neumann boundary condition

(∂nnB)|∂Ωi = 0, (6)

which implies that the surface of the given AP is
impermeable and inert for particles B.

Since different types of boundary conditions can be
imposed on different active particles, one faces the so-called
improper mixed boundary value problem, in contrast to proper
mixed boundary value problems when different boundary
conditions are imposed on disjoint parts of the same AP
boundary.17,65

In addition, we impose the regularity condition at infinity,
i.e., the local concentration nB(x) approaches its constant bulk
value n0 at infinity,

nB |‖x‖→∞ → n0. (7)

Since Eq. (3) with any of the boundary conditions (a)-
(c) and regularity condition at infinity (7) forms a well posed
exterior boundary value problem,66,67 it possesses a regular
solution. Once the local concentration nB(x) is found, one can
deduce the total flux of diffusing particles B onto the ith AP

Ji =

∫
∂Ωi

(−D∂nnB) |∂Ωi dsi, (8)

where dsi stands for the incremental surface area on the surface
∂Ωi. One can also write it in the form of the microscopic
absorption rate

ki =
Ji

n0
. (9)

Note that, strictly speaking, the microscopic absorption rate
(9) in the case of two or more APs does not coincide with the
macroscopic rate constant k.5

To study the diffusion interaction, it is expedient to
introduce the reduced B particles’ concentration field

u(x) = 1 −
nB(x)

n0
,

which varies between 0 and 1, vanishes at infinity, and obeys
the following exterior Robin boundary value problem:

∇2u = 0 (x ∈ Ω−), (10)

(Λi∂nu + u)|∂Ωi = 1, (11)

u|‖x‖→∞ → 0, (12)

where Λi = D/κi (i = 1, 2) has units of length. The solution to
the boundary value problem (10)–(12) takes into account the
DI effects and gives a complete microscopic description of the
diffusion trapping model under consideration.

III. METHOD OF SOLUTION

In this section, for the sake of generality, we consider the
arrays comprising N APs. Thus here we assume that B particles
diffuse in the exterior domain outside APs

Ω
− = R3\

N⋃
i=1

Ωi, ∂Ω− =

N⋃
i=1

∂Ωi (13)

under the condition of mutually disjoint AP domains:
Ωi ∩Ωj = ∅ for (i , j).

The most commonly used analytical and numerical meth-
ods for solving boundary value problems for the Laplace
equation given on Ω� are68

• the method of images;
• the method of reflections;
• Green’s function method;
• the method of induced forces;
• the method of irreducible Cartesian tensors;
• direct methods in the calculus of variations;
• the method of surface integral equations;
• the method of fundamental solutions;
• the domain decomposition method;
• a fat boundary method;
• finite difference and finite elements methods;
• Monte Carlo simulations.

Despite a number of inherent advantages, all above
approaches have also weaknesses as compared to the general-
ized method of separation of variables. This method allows one
to overcome many difficulties of existing methods and to pro-
vide a clear and powerful semi-analytical approach to solve
the problem for systems comprising many different active
particles.

For further description, we recall the definition of the
canonical domain. A three-dimensional domain Ω ⊂ R3 is
called canonical for a given partial differential equation if the
classical solution to this equation may be expanded on Ω into
an absolutely and uniformly convergent series with respect to
relevant basis solutions in the Hilbert space L2(∂Ω). Due to
the rather complicated geometry of the exterior domainΩ� for
N > 2, it is not possible to reduce the Laplace equation (10)
even to some equation with R-separable variables globally in
the whole Ω�.80 On the other hand, taking into account the
symmetry of the Laplace equation under translations, prob-
lem (10)–(12) may be solved analytically in the whole Ω� if
one uses the relevant local curvilinear orthogonal coordinates
associated with the surfaces ∂Ωi, where Ωi (i = 1, N) are the
canonical domains. In our example, domains Ω1 (a ball) and
Ω2 (a prolate spheroid) are canonical.

The main idea of the GMSV for N canonical domains
relies on Green’s representation of any harmonic function,
u(x), which is regular at infinity, at any interior point x ∈ Ω�

as66

u(x) =
∫
∂Ω−

[
u(s)∂nG(x, s) − G(x, s)∂nu

]
ds, (14)

where G(x, y) = 1/(4π‖x − y‖) is the Newton potential (or
electrostatic potential in three dimensions). By means of the
Riemann integral additivity with respect to the surface of inte-
gration ∂Ω� and relation (13), Eq. (14) leads to the unique
decomposition

u(x) =
N∑

i=1

ui(x) in Ω
−, (15)

where

ui(x) B
∫
∂Ωi

[
u(s)∂nG(x, s) − G(x, s)∂nu

]
∂Ωi

dsi (16)
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is termed the partial solution corresponding to the AP concen-
trated in Ωi. Applying the boundary conditions, one gets a set
of integral equations on functions ui |∂Ωi that can be resolved by
different methods. In particular, for each ∂Ωi, one can decom-
pose the Newton potential G(x, s) in Eq. (16) on the basis of
appropriate functions in the local coordinates of the AP in Ωi.
This decomposition decouples x and s variables and yields
an expansion of the partial solution ui(x) on that basis. The
unknown coefficients of the expansion are then fixed by the
boundary conditions, which are exactly satisfied by substi-
tution accompanied by the use of appropriate re-expansion
formulas (in diffraction theory commonly termed as “addition
theorems”).40 In other words, one looks for the classical solu-
tion of problem (10)–(12) as a superposition of N implicit
expansions into basis solutions of the Laplace equation in
each orthogonal curvilinear coordinate system connected with
the APs of the array. As a result, the original boundary value
problem with respect to a harmonic function is reduced to a
Fredholm second kind infinite set of linear algebraic equa-
tions (ISLAE) in the Hilbert space of sequences `N

2 with
respect to the sequences of unknown coefficients. Provided
that the relevant matrix operator of the ISLAE is compact, the
system can be truncated and numerically solved. The prac-
tical implementation of this general scheme is illustrated in
Sec. IV for the particular case of two “sphere-prolate spheroid”
APs.

IV. SOLUTION TO THE PROBLEM

In order to solve the boundary value problem (10)–
(12), we use the local curvilinear coordinates associated with
the symmetries of two APs. The local spherical coordinates
(O1; r, θ, φ) are related to the local Cartesian coordinates
(O1; x1, y1, z1) as

*.
,

x1

y1

z1

+/
-
= r *.

,

sin θ cos φ
sin θ sin φ

cos θ

+/
-

, (17)

where 0 < r < ∞, 0 < θ < π, 0 < φ < 2π, and

*.
,

r
θ
φ

+/
-
=

*....
,

+
√

x2
1 + y2

1 + z2
1

tan−1
[√

x2
1 + y2

1/z1

]

tan−1 (y1/x1)

+////
-

. (18)

In turn, the local prolate spheroidal coordinates (O2; α, β, φ)
are related to the local Cartesian coordinates (O2; x2, y2, z2)
as66,69

*.
,

x2

y2

z2

+/
-
= aE

*.
,

sinh α sin β cos φ
sinh α sin β sin φ

cosh α cos β

+/
-

, (19)

where 0 < α < ∞, 0 < β < π, 0 < φ < 2π, and

*.
,

α
β
φ

+/
-
=

*.
,

cosh−1 [(r+ + r−) /(2aE)]
cos−1 [(r+ − r−) /(2aE)]

tan−1 (y2/x2)

+/
-

, (20)

where

r± =
√

x2
2 + y2

2 + (z2 ± aE)2 (21)

are the distances to the two foci located at points (0, 0, ±aE)
and

aE =
√

b2 − a2 (22)

is half of the focal distance. Note that local prolate spheroidal
coordinates (O2; α, β, φ) are dimensionless and aE is the only
scale factor which has the dimension of length.

Finally, the local Cartesian coordinates (O1; x1, y1, z1)
and (O2; x2, y2, z2) are related by translation,

x2 = x1, y2 = y1, z2 = z1 + L. (23)

The above formulas allow one to “switch” between local coor-
dinates of two APs that will be the key property in the following
derivation.

In local coordinates, the two APs domains are defined as

Ω1(x1
0) =

{
x ∈ R3 : 0 < r < R

}
,

Ω2(x2
0) =

{
x ∈ R3 : 0 < α < α0

}
,

where α0 determines the boundary of the second AP,

∂Ω2 = {α = α0 : 0 < β < π, 0 < φ < 2π} ,

with

α0 = cosh−1
(

b
aE

)
.

The general solution to problem (10)–(12) may be given
as the superposition

u(x) = u1(r, θ) + u2(α, β). (24)

Due to the axial symmetry of the domainΩ�, the solution u(x)
does not depend on φ which will be omitted in the remaining
text. In Eq. (24), the partial solutions corresponding to the
sphere, u1(r, θ), and to the prolate spheroid, u2(α, β), satisfying
the regularity condition at infinity (12), read66,69

u1(r, θ) =
∞∑

n=0

A(1)
n r−n−1 Pn(cos θ), (25)

u2(α, β) =
∞∑

n=0

A(2)
n Qn(cosh α) Pn(cos β), (26)

where Pn(x) and Qn(x) are the Legendre functions of the first
and second kinds, respectively. To find the unknown coeffi-
cients A(1)

n and A(2)
n , we use the re-expansion formulas40 for

the “sphere-prolate spheroid” array,

r−n−1 Pn(cos θ) =
∞∑

k=0

U12
nk Pk(cosh α)Pk(cos β), (27)

where the so-called mixed-basis matrix elements are

U12
nk =

(−1)n+k(2k + 1)a−n−1
E

n!(σ2 − 1)n/2
Qn

k (σ) (σ > 1), (28)

and for prolate spheroid/sphere,

Qn(cosh α)Pn(cos β) =
∞∑

k=0

U21
nk rk Pk(cos θ), (29)

where the reciprocal mixed-basis matrix elements read

U21
nk =

(−1)k+na−k
E

k!(σ2 − 1)k/2
Qk

n(σ) (σ > 1), (30)
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with σ = L/aE , k = 0,∞, n = 0,∞, and Qk
n is the associ-

ated Legendre function of the second kind, which can also be
expressed in terms of the Gauss hypergeometric function,

Qk
n(ζ) =

(−1)k√π(n + k)!

2n+1Γ(n + 3/2)ζn+k+1
(ζ2 − 1)k/2

× 2F1

(
n + k

2
+ 1,

n + k + 1
2

; n +
3
2

; ζ−2
)

.

Using representations (25) and (26), we search for the
coefficients A(1)

n and A(2)
n to satisfy the boundary conditions

(11). We get on the boundary of the sphere,

1 =
(
Λ1∂nu + u

)
|∂Ω1

=

∞∑
n=0

A(1)
n q(1)

n Pn(cos θ) +
∞∑

n=0

A(2)
n

∞∑
k=0

U21
nk p(1)

k Pk(cos θ),

(31)

where

p(1)
n =

(
1 − nλ1

)
Rn, (32)

q(1)
n =

[
1 + (n + 1)λ1

]
R−n−1, (33)

with λ1 = Λ1/R = D/(Rκ1). Multiplying this relation by
Pm(cos θ)sin θ and integrating over θ from 0 to π, we get for
any m = 0,∞ the infinite system of equations

A(1)
m q(1)

m +
∞∑

n=0

A(2)
n U21

nmp(1)
m = δm,0. (34)

Similarly, the boundary condition at the boundary of the
spheroid reads

1 =
(
Λ2∂nu + u

)
|∂Ω2

=

∞∑
n=0

A(1)
n

∞∑
k=0

U12
nk p(2)

k Pk(cos β) +
∞∑

n=0

A(2)
n q(2)

n Pn(cos β),

(35)

where

p(2)
n = Pn(cosh α0) + Λ2

(
∂nPn(cosh α)

)
α0

= Pn(cosh α0) −
Λ2 sinh α0

hα0

P′n(cosh α0), (36)

q(2)
n = Qn(cosh α0) + Λ2

(
∂nQn(cosh α)

)
α0

= Qn(cosh α0) −
Λ2 sinh α0

hα0

Q′n(cosh α0), (37)

and we represented the normal derivative as

∂nf (α) = −
1

hα
∂αf (α), (38)

where

hα = aE

√
sinh2(α) + sin2(β) (39)

is the corresponding scale factor. In contrast to the spheri-
cal sink, the coefficients p(2)

n and q(2)
n depend on the angular

coordinate β if Λ2 > 0.
For the Dirichlet case (Λ2 = 0), the multiplication of

Eq. (35) by Pm(cos β)sin β and integration over β from 0 to π
yield another infinite set of linear equations

∞∑
n=0

A(1)
n U12

nm p(2)
m + A(2)

m q(2)
m = δm,0. (40)

For the Neumann case, Eq. (35) is multiplied by
−(hα0/ sinh α0)Pm(cos β) sin β/Λ2 and integrated over β from
0 to π. In the limit Λ2 →∞, one gets

∞∑
n=0

A(1)
n U12

nm p̃(2)
m + A(2)

m q̃(2)
m = 0, (41)

with

p̃(2)
n = P′n(cosh α0), q̃(2)

n = Q′n(cosh α0). (42)

Finally, in the intermediate Robin case, the integration of Eq.
(35), multiplied by Pm(cos β)sin β, results in the infinite set
of linear equations

∞∑
n=0

{
A(2)

n Qmn +
( ∞∑

k=0

A(1)
k U12

kn

)
Pmn

}
= δm,0, (43)

with

Qmn = δmnQn(cosh α0) − λ2 sinh α0Q′n(cosh α0)Imn,

Pmn = δmnPn(cosh α0) − λ2 sinh α0P′n(cosh α0)Imn,
(44)

which involve the integrals

Imn = (m + 1/2)

π∫
0

d β sin β
Pm(cos β) Pn(cos β)√

sinh2 α0 + sin2 β

. (45)

These integrals can be computed numerically. However, in the
rest of this paper, we focus on the Dirichlet and Neumann
cases, for which these integrals are not needed.

Combining Eq. (34) with either Eq. (40) forΛ2 = 0 or Eq.
(41) for Λ2 =∞ or Eq. (43) for 0 < Λ2 <∞, one gets a closed
ISLAE that can be written in the matrix form as(

W(11) W(12)

W(21) W(22)

)
︸              ︷︷              ︸

W

(
A(1)

A(2)

)
=

(
B(1)

B(2)

)
, (46)

where B(1) = B(2) = (1, 0, 0, . . .)T and

(W(11))kn = δnk q(1)
k , (W(12))kn = U21

nk p(1)
k ,

(W(21))kn = U12
nk p(2)

k , (W(22))kn = δnk q(2)
k .

(47)

In the Neumann case (Λ2 =∞), one uses B(2) = (0, 0, 0, . . .)T,
and p(2)

k and q(2)
k are replaced by p̃(2)

k and q̃(2)
k . Inverting the

matrix W, one gets the coefficients A(1)
n and A(2)

n .
The analytical solutions (24)–(26) with these coefficients

are the main theoretical results of this paper. In practice, the
infinite series in Eqs. (25) and (26) are truncated at some
order, nmax � 1, yielding the nmax-pole approximate solution
with any desired accuracy controlled by nmax. Consequently,
infinite-dimensional matrices W(ij) are truncated to a finite
size nmax × nmax, and the coefficients A(1)

n and A(2)
n are found

by inverting a 2nmax × 2nmax matrix W. Since the computation
of coefficients implies the numerical step, the solution is called
semi-analytical. The significant advantage of this solution is
the analytical dependence on coordinates and a very fast con-
vergence with nmax: for most applications, it is enough to take
the truncation size nmax between 5 and 10.
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The diffusive flux onto the spherical sink can be obtained
as

J1 = −Dn0

∫
∂Ω1

∞∑
n=0


− (n + 1)A(1)

n R−n−2Pn(cos θ)

+
∞∑

k=0

U21
nk kRk−1Pk(cos θ)


ds1 = 4πDn0A(1)

0 , (48)

where ds1 = R2sin θdθdϕ, and the other terms vanished due to
the orthogonality of Legendre polynomials Pn. Similarly, we
get the diffusive flux onto the spheroid as

J2 = −Dn0

∫
∂Ω2

∞∑
n=0

{
A(2)

n
sinh α0

hα0

Q′n(cosh α0)Pn(cos β)

+ A(1)
n

∞∑
k=0

U12
nk

sinh α0

hα0

P′k(cosh α0)Pk(cos β)



ds2

= 4πDn0aEA(2)
0 , (49)

where ds2 = aEhα sinh α sin βdβdϕ,

Q0(z) =
1
2

ln
z + 1
z − 1

and Q′0(z) =
1

1 − z2
.

Expression (49) is only valid for the Dirichlet case. For the
Neumann case, the flux is zero: J2 = 0. An extension to the
Robin case can also be derived.

Note that the classical solution for a single sphere (with-
out the spheroid) can be obtained by setting u2 = 0 (and thus
A(2)

n = 0), from which Eq. (34) yields immediately

A(1)
n = δn,0

R
1 + λ1

. (50)

As a consequence, we have

u =
1

1 + λ1

R
r

, (51)

and the total diffusive flux is

J0
1 =

4πDn0R
1 + λ1

=
4πDn0R

1 + D/(Rκ1)
, (52)

in agreement with the Collins-Kimball solution.2,63 In the
Dirichlet case Λ1 = λ1 = 0, one retrieves the Smoluchowski
diffusive flux.1 The superscript 0 highlights that this flux
corresponds to the particular case of a single sphere.

Similarly, the solution for a single spheroid (without the
sphere) is obtained by setting u1 = 0 (and thus A(1)

n = 0), from
which Eq. (40) yields A(2)

n = δn,0/q0 and thus

u2(α, β) =
Q0(cosh α)

q(2)
0

. (53)

For the Dirichlet case, the diffusive flux is then

J0
2 =

4πDn0aE

q(2)
0

=
4πDn0aE

Q0(cosh α0)
=

8πDn0aE

ln
( 1+aE/b

1−aE/b

) . (54)

In the limit a→ b, one has aE → 0 and recovers the flux onto
the sphere of radius b. In turn, when a → 0, one has aE → b
so that

J '
4πDn0b
ln(2b/a)

. (55)

As expected, the flux vanishes logarithmically in the limit
when the prolate spheroid becomes an infinitely thin
rod.

V. THE DIFFUSIVE INTERACTION EFFECTS
AND THE ROLE OF THE SHAPE

It is well known that the DI appeared to be the most pro-
found in the steady-state regime when the interaction becomes
long ranged and affects the entire array.5 So one can treat
results obtained for the steady-state reaction rate as a lower
bound of the relevant time-dependent rate due to diffusive
interaction. We aim here at quantifying the DI effect of one

FIG. 2. Solution u of the problem in
the XZ plane, for three types of bound-
ary conditions: DD (Dirichlet on both
APs, top row), DN (Dirichlet on the
sphere, Neumann on the spheroid, mid-
dle row), and ND (Neumann on the
sphere, Dirichlet on the spheroid, bot-
tom row), with a = 1 (left), a = 0.5
(middle), and a = 0.1 (right) and b
= 1, R = 1, and L = 3 (APs are separated
by distance 1). We used nmax = 10.
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FIG. 3. Solution u of the problem in
the XZ plane, for Janus dimers with
three types of boundary conditions: DD
(Dirichlet on both APs, top row), DN
(Dirichlet on the sphere, Neumann on
the spheroid, middle row), and ND
(Neumann on the sphere, Dirichlet on
the spheroid, bottom row), with a = 1
(left), a = 0.5 (middle), and a = 0.1
(right) and b = 1, R = 1, and L = 2
(touching APs). We used nmax = 10.

AP on the other. The reference point is the case of two
spheres. We compare three settings: (i) two perfect sinks
(κ1 = κ2 = ∞, DD), (ii) absorbing sphere with a reflecting
spheroid (κ1 =∞, κ2 = 0, DN), and (iii) reflecting sphere with
an absorbing spheroid (κ1 = 0, κ2 =∞, ND).

Figures 2 and 3 illustrate how the local concentration of
B particles depends on the shapes of two APs, whereas the
normalized diffusive fluxes onto two APs are summarized in
Table I.

For two well separated APs, Fig. 2 shows that the diffu-
sive interaction is strong enough to treat the whole DD array
as an effective ideal sink. In turn, both cases DN and ND
indicate that the DI becomes much weaker, provided that one
of the two APs is reflecting. Moreover, the analysis of the
corresponding infinite systems of equations reveals that the
diffusive interaction arises starting from monopole terms for
ideally absorbing APs, whereas this interaction is rather weak

TABLE I. Normalized diffusive fluxes Jn
1 = J1/J0

1 and Jn
2 = J2/J0

2 onto two

sinks (the sphere and the spheroid), divided by the fluxes J0
1 and J0

2 onto a
single sphere and a single spheroid, for three types of boundary conditions:
DD (Dirichlet on both sinks), DN (Dirichlet on the sphere, Neumann on the
spheroid), and ND (Neumann on the sphere, Dirichlet on the spheroid), with
three values of a (1, 0.5, 0.1), b = 1, R = 1, and two values of L (3 and 2). We used
nmax = 10. One has J0

1/(Dn0R) = 12.5664, J0
2 (a = 0.5)/(Dn0b) = 8.2636,

and J0
2 (a = 0.1)/(Dn0b) = 4.1772.

a = 1 a = 0.5 a = 0.1

L Type Jn
1 Jn

2 Jn
1 Jn

2 Jn
1 Jn

2

2
DD 0.6931 0.6931 0.8154 0.6033 0.9180 0.5196
DN 0.9628 0 0.9901 0 0.9996 0
ND 0 0.9628 0 0.9505 0 0.9578

3
DD 0.7572 0.7572 0.8436 0.7180 0.9234 0.6840
DN 0.9929 0 0.9984 0 0.9999 0
ND 0 0.9929 0 0.9942 0 0.9968

and emerges starting from dipole terms only for reflecting
APs.

A similar behavior of the local concentration field is
observed for Janus dimers depicted in Fig. 3. Note that the
last picture for the DN row in Fig. 3 corresponds to the
above-mentioned model of an antenna system.51,52

The DI effects are especially well seen in Fig. 4 which
shows how the flux onto an absorbing prolate spheroid in the
presence of a large sphere depends on its aspect ratio. Here we
fix the minor semi-axis a = 0.1 and change the major semi-axis
b from a to 2 (note that the radius of the reflecting sphere is
R = 1). Solid and dashed lines show the results in the presence
of a reflecting/absorbing large sphere. For comparison, we also
present the flux from Eq. (54) for a single spheroid (without the
large sphere). One can see that the effect of the large reflecting
sphere is minor. In turn, the large absorbing sphere captures
some B particles that would otherwise come to the spheroid
and thus reduces the flux. This is a clear manifestation of the
diffusive interaction effect.

FIG. 4. The diffusive flux onto Janus dimers: an absorbing prolate spheroid
in the presence of a large reflecting sphere (solid line), in the presence of a
large absorbing sphere (dashed line), and without a large sphere (dotted line)
as a function of the larger semi-axis b, with R = 1, a = 0.1, and L = R + b
(touching APs). We used nmax = 15.
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VI. CONCLUSION

We presented the basic principles and an example of prac-
tical implementation of the generalized method of separation
of variables. This approach had been successfully applied for
many decades to diffusion, electrostatic and hydrodynamic
problems in arrays of spherical active particles. We demon-
strated how this powerful semi-analytical technique can be
extended to arbitrary canonical domains (e.g., spheroids, cir-
cular and elliptic cylinders, cones) and their finite number
of non-overlapping unions that opens conceptually new hori-
zons for the analysis of diffusion-influenced reactions with
complicated molecules and composite materials. For the sake
of simplicity, we illustrated the formulation and implementa-
tion of the GMSV for an important example of a two-particle
“sphere-prolate spheroid” array. The semi-analytical solution
of the steady-state diffusion equation allowed us to investigate
in depth the diffusive interaction effects of one active particle
on the other. In particular, we studied the respective roles of
the shape and surface chemical activities on the reaction rates
and the concentration profile.

It is important to emphasize that although the considered
setting with two active particles looks simple, a numerical
solution of the underlying exterior problem is rather difficult.
Standard numerical solvers are not well adapted to exterior
problems as one needs to impose a distant artificial outer
boundary, either for discretizing the domain (finite difference
and finite element methods) or for restricting the motion of
random walkers (for Monte Carlo algorithms). However, the
presence of this artificially imposed boundary may signifi-
cantly affect the solution due to strong long-range diffusion
interactions. In order to reduce this effect, the artificial outer
boundary should be set very far away from the APs that slow
down simulations. By contrast, the GMSV, which operates
with decaying at infinity basis functions, does not require
any artificial outer boundary at all. As a matter of fact, the
GMSV uses the most appropriate basis functions which are
specifically adapted to the considered array of APs. This imple-
mentation ensures its superior efficiency as compared to other
numerical methods.

Future extensions of the present work may include the
case of various systems consisting of two or more APs, e.g.,
“sphere-oblate spheroid” and different variations of “spheroid-
spheroid” arrays. Moreover, the generalized method of sepa-
ration of variables allows us to solve all steady-state diffusion
problems for arrays of two or more arbitrary APs shaped
as canonical domains. Note that the proposed solution can
be easily extended to the case of one prolate spheroid and
multiple spheres of different radii (with the co-axial symme-
try). Although an extension to multiple spheroids with differ-
ent locations is feasible as well, it would require additional
re-expansion formulas.

Moreover, using the appropriate dual series (integral)
equation technique,65 a number of exterior and interior prob-
lems for diffusion and chemically anisotropic diffusion-
influenced reactions in complex geometries containing both
two-dimensional surfaces with smooth boundaries and with-
out them (e.g., spheres with circular holes or with circular
active patches) become tractable semi-analytically. Among

them, it is worth noting a number of important problems on
diffusion escape through narrow openings.70–75 Finally, the
GMSV may be naturally extended to treat time-dependent
effects of diffusion interaction between active particles,76 and,
furthermore, it may also be employed for similar problems in
Stokes hydrodynamics of suspensions.
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APPENDIX: THE CASE OF TWO ACTIVE SPHERES

As a reference point, we recall the main results for two
spherical ideal sinks of the same radius.

1. The method of bispherical coordinates

First we recall that the bispherical coordinate system
(O; ξ, η, φ) is related to the global Cartesian coordinates
(O; x, y, z) as66,67

*.
,

x
y
z

+/
-
=

a
cosh ξ − cos η

*.
,

sin η cos φ
sin η sin φ

sinh ξ

+/
-

, (A1)

whereas the inverse relation is

*.
,

ξ
η
φ

+/
-
=

*.
,

sinh−1 (2az/Q
)

cos−1 ((R2 − a2)/Q
)

tan−1(y/x)

+/
-

, (A2)

where �∞ < ξ <∞, 0 < η < π, 0 < φ < 2π, R =
√

x2 + y2 + z2,
and Q =

√
(R2 + a2)2 − (2az)2.

The bispherical coordinate parameter a (sometimes
termed as the interfocal distance) has units of length and is
given as a = R sinh ξ0, where ξ0 = cosh�1(L/(2R)). Therefore,
a is fixed by the distance between the centers of the sinks L
and by their radius R and for our case reads

a =
1
2

√
L2 − 4R2 .

In bispherical coordinates, the exterior of two spheres, Ω�, is
simply described by the inequality |ξ | < ξ0.

The Laplace equation is multiplicatively R-separable
in bispherical coordinates with the modulation factor√

2 (cosh ξ − cos η).66 That is the reason why this coordinate
system was successfully used to obtain the exact solution to
Laplace or Stokes equations in the exterior of two spheres.
With the aid of bispherical coordinates, Samson and Deutch10

solved exactly the axially symmetric steady-state diffusion
problem for two identical absorbing spheres of radii R, located
at x1

0 = (0, 0,−L/2) and x2
0 = (0, 0, L/2), while Tachiya

used this solution to find the escape probability.77 The local
concentration of B particles is governed by the following
formula:10

u(ξ, η) = 1 −
√

2(cosh ξ − cos η)

×

∞∑
m=0

Cm cosh

[(
m +

1
2

)
ξ

]
Pm (cos η) , (A3)
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where Pm(cos η) are Legendre polynomials and

Cm =
exp

[
−

(
m + 1

2

)
ξ0

]

cosh
[(

m + 1
2

)
ξ0

] .

The normalized flux to each sink is given by the series

k1

kS
=

k2

kS
= 2

∞∑
m=0

sinh ξ0

1 + exp
[
(2m + 1) ξ0

] , (A4)

where kS is given by Eq. (2). One can rewrite this expression
in the alternative form

k1

kS
=

k2

kS
=

∞∑
m=1

(−1)m−1 sinh ξ0

sinh mξ0
. (A5)

In the case of an ideal sink dimer (ξ0 → 0), series (A5) yields
the well-known exact value k1/kS = ln 2.9,10,41

We used this analytical solution for checking the accuracy
of our semi-analytical results for two spheres, in particular, for
determining an appropriate choice of the truncation size nmax.
In particular, for L = 3 and R = b = 1, the maximal error between
two solutions was around 10�6 for nmax = 10.

In contrast to the above explicit results for the Dirich-
let boundary condition, the method of bispherical coordinates
becomes more difficult for other boundary conditions due to
the modulation factor, which leads to the systems of recur-
rence relations with respect to unknown coefficients.7,11,12 By
means of Green’s function for the difference equations, Love
managed to obviate the above difficulties, but this procedure is
rather cumbersome to use.78 In turn, the GMSV is free of these
difficulties and allows one to investigate much more general
geometric settings.

2. The generalized method of separation of variables

The generalized method of separation of variables
appeared to be free of the aforementioned restrictions that are
inherent for the method of bispherical coordinates.41

The solution for one sphere and one spheroid is not easily
reducible to the case of two spheres because the focal dis-
tance aE vanishes when a→ b. For this reason, we separately
write the solution for two spheres of radii R and b, located,
respectively, at points x1

0 = (0, 0,−L) and x2
0 = (0, 0, 0). The

derivation follows the same lines; the only difference is that
for the exterior of Ω2(x2

0), the prolate spheroidal coordinates
are replaced by the spherical coordinates,

u2(r2, θ2) =
∞∑

n=0

A(2)
n r−n−1

2 Pn(cos θ2). (A6)

We emphasize that (O2; r2, θ2) are the local coordinates in the
system of coordinates of the second sphere. For the exterior
of the first sphere Ω1(x1

0), we will write (O1; r1, θ1) instead of
previously used (O1; r, θ). The re-expansion formulas are

r−n−1
1 Pn(cos θ1) =

∞∑
k=0

U12
nk rk

2 Pk(cos θ2) (r2 < L), (A7)

with the mixed-basis matrix elements

U12
nk =

(−1)k

Ln+k+1

(n + k)!
n! k!

, (A8)

and

r−n−1
2 Pn(cos θ2) =

∞∑
k=0

U21
nk rk

1 Pk(cos θ1) (r1 < L), (A9)

with the reciprocal mixed-basis matrix elements

U21
nk =

(−1)n

Ln+k+1

(n + k)!
n! k!

. (A10)

One gets the same infinite set of linear equations with

p(2)
n =

(
1 − nλ2

)
bn,

q(2)
n =

[
1 + (n + 1)λ2

]
b−n−1,

(A11)

and λ2 = Λ2/b.
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