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Abstract.  We investigate the geometric properties of the convex hull over 
n successive positions of a planar random walk, with a symmetric continuous 
jump distribution. We derive the large n asymptotic behavior of the mean 
perimeter. In addition, we compute the mean area for the particular case of 
isotropic Gaussian jumps. While the leading terms of these asymptotics are 
universal, the subleading (correction) terms depend on the finer details of 
the jump distribution and describe a ‘finite size eect’ of discrete-time jump 
processes, allowing one to accurately compute the mean perimeter and the 
mean area even for small n, as verified by Monte Carlo simulations. This is 
particularly valuable for applications dealing with discrete-time jumps processes 
and ranging from the statistical analysis of single-particle tracking experiments 
in microbiology to home range estimations in ecology.
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1. Introduction

Consider a set of n points with position vectors {�r1, �r2, . . . , �rn} in a d-dimensional 
space. The most natural and perhaps the simplest way to characterize the shape of this 
set of points is by drawing the convex hull around this set: a convex hull is the unique 
minimal convex polytope that encloses all the points. This unique polytope is convex 
since the line segment joining any two points on the surface of the polytope is fully 
contained within the polytope. Properties of such convex polytopes have been widely 
studied in mathematics, computer science (image processing and patter recognition) 
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and in the physics of crystallography (the Wul construction). In two dimension, 
where the convex hull is a polygon, there are many other applications, most notably 
in ecology where the home range of animals or the spread of an epidemics are typically 
estimated by convex hulls. For a review on the history and applications of convex 
hulls, see [1].

When the points {�r1, �r2, . . . , �rn} are drawn randomly from a joint distribution 
P (�r1, �r2, . . . , �rn), the associated convex hull also becomes random and characterizing 
its statistical properties is a challenging problem, since the convex hull is a highly non-
trivial functional of the random variables {�r1, �r2, . . . , �rn}. For instance, what can one 
say about the statistics of the surface area Sd or the volume Vd of the convex hull, for 
a given joint distribution P (�r1, �r2, . . . , �rn)? Even finding the mean surface area 〈Sd〉 or 
the mean volume 〈Vd〉, for arbitrary joint distribution, is a formidably dicult prob-
lem. In the special case when the points are independent and identically distributed, 
i.e. when the joint distribution factorizes as P (�r1, �r2, . . . , �rn) =

∏n
k=1 P (�rk) (with P (�rk) 

representing the marginal distribution), several results on the statistics of the surface 
and volume of the convex hull are known (see [1] for a historical review). However, for 
correlated points where the joint distribution does not factorize, very few results are 
available.

The simplest example of a set of correlated points corresponds to the case of a ran-
dom walk in d-dimensional continuous space, where �rk represents the position of the 
walker at step k, starting at the origin at step 0. The position evolves via the Markov 
rule, �rk = �rk−1 + �ηk, where �ηk represents the jump at step k, and one assumes that �ηk 
are independent and identically distributed random variables, each drawn from some 
prescribed distribution p(�ηk). The walk evolves up to n steps generating the vertices 
{�r1, �r2, . . . , �rn} of its trajectory. There is a unique convex hull for each sample of this 
trajectory. What can one say about the mean surface area or the mean volume of 
this convex hull, given the jump distribution p(�ηk)? This is the basic problem that 
we address in this paper. We show that at least for d = 2 (planar random walks), it is 
possible to obtain precise explicit results for all n for the mean perimeter and the mean 
area of the convex hull of the walk, for a large class of jump distributions p(�η), includ-
ing in particular Lévy flights where the jump distribution has a fat tail. We also obtain 
similar results for the mean area of the convex hull but under additional assumptions 
on the jump distribution.

This problem concerning the convex hull of a random walk becomes somewhat 
simpler in the special case of the Brownian limit, where several results are known. 
Consider, for example a jump distribution p(�ηk) with zero mean and a finite variance 
σ2. In this case, the walk converges in the large n limit to the Brownian motion. In 
other words, one can consider the continuous-time limit, as σ2 → 0 and n → ∞ with 
nσ2 = 2D t being fixed (here D is called the diusion constant and t is the duration of 
the walk). In this Brownian limit and for d = 2, the mean perimeter and the mean area 
have been known exactly for a while. Takács [2] computed the mean perimeter

〈S2〉 =
√
16πD t , (1)

while El Bachir [3] and Letac [4] computed the mean area

〈V2〉 = πD t . (2)

https://doi.org/10.1088/1742-5468/aa8c11
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For a planar Brownian bridge of duration t (where the walker returns to the ori-

gin after time t), the mean perimeter 〈S2〉bridge =
√
π3 D t was computed by Goldman 

[5], while the mean area 〈V2〉bridge = (2π/3)D t was computed relatively recently by 
Randon-Furling et al [6]. An interesting extension of this problem in d = 2 is to the 
case of N independent planar Brownian motions (or Brownian bridges) [1, 6]. This is 
relevant in the context of the home range of animals, where N represents the size of an 
animal population and the trajectory of each animal is approximated by a Brownian 
motion during their foraging period. For a fixed population size N, the mean perimeter 
and the mean area of the convex hull were computed exactly: 〈S2〉 = αN

√
D t and 

〈V2〉 = βN D t, where the prefactors αN  and βN  were found to have nontrivial N depend-
ence [1, 6]. For d > 2, very few exact results are known for this problem. For a single 
(N = 1) Brownian motion, the mean surface area and the mean volume of the convex 

hull were recently computed by Eldan [7]: 〈Sd〉 = 2(4πDt)(d−1)/2

Γ(d)
 and 〈Vd〉 = (πDt)d/2

Γ(d/2+1)2
 (see 

also [8] for another derivation and extension to Brownian bridges). However, for N > 1 

and d > 2, no exact result is available. Finally, going beyond the mean surface and the 
mean volume, very few results are known for higher moments (see the review [1] for 
results on variance) or even the full distribution of the surface or the volume of the 
convex hull of Brownian motion (see [9, 10] for a recent discussion on the distribution 
of the perimeter in d = 2 and N = 1). Very recently, the full distribution (including the 
large deviation tails) of the perimeter and the area of N � 1 planar Brownian motions 
were calculated numer ically [11, 12]. Some rigorous results on the convex hulls of Lévy 
processes were recently derived [13, 14].

If one is interested only in the mean area or the mean volume of the convex hull of a 
generic stochastic process (not necessarily just a random walk), a particular simplification 
occurs in d = 2 (planar case) where several analytical results can be derived by adapt-
ing Cauchy’s formula [15, 16] for arbitrary closed convex curves in d = 2. Indeed by 
employing Cauchy’s formula for every realization of a random planar convex hull, it was 
shown in [1, 6] that the problem of computing the mean perimeter and the mean area of 
an arbitrary two dimensional stochastic process (can in general be non-Markovian and in 
discrete-time) can be mapped to computing the extremal statistics associated with the 
one dimensional component of the process (see section 3 for the precise mapping). This 
mapping was introduced originally in [6] to compute 〈S2〉 and 〈V2〉 exactly for N � 1 
planar Brownian motions. Since then, it has been used for a number of continuous-time 
planar processes: random acceleration process [17], branching Brownian motion with 
applications to animal epidemic outbreak [18], anomalous diusion processes [19] and 
also to a single Brownian motion confined to a half-space [20].

The objective of this paper is to go beyond the continuous-time limit and obtain 
results for the convex hull of a discrete-time planar random walk of n steps (with n large 
but finite) with arbitrary jump distribution, including for instance Lévy flights. Indeed, 
in any realistic experiment or simulation, the points of the trajectory are always dis-
crete. For example, recently proposed local convex hull estimators [21] are based on a 
relatively small number of points, where we cannot apply the Brownian limiting results 
reviewed above. The first rigorous result for a two-dimensional discrete random walk, 
modeled as a sum of independent random variables in the complex plane, was derived 
for the mean perimeter of the convex hull by Spitzer and Widom [22],

https://doi.org/10.1088/1742-5468/aa8c11
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〈Ln〉 = 2
n∑

k=1

〈|xk + iyk|〉
k (3)

(here xk + iyk is the complex-valued position of the walker after k steps). Although the 
formula (3) looks deceptively simple, an explicit computation of the mean 〈Ln〉 is dicult 
using equation (3), in particular its behavior for large but finite n. For the case of zero 
mean and finite variance jump distributions, the leading n

1
2 term in 〈Ln〉 was identified 

in [22], but the relevant subleading terms were not known, to the best of our knowledge. 
For other results on the statistics of Ln, see [23]. The Spitzer–Widom formula (3) was 
extended to generic d-dimensional random walks in [24], in which exact combinatorial 
expressions for the expected surface area and the expected volume of the convex hull 
were derived. However, these expressions are not suitable for the asymptotic analysis 
at large n. Several other geometrical properties of the convex hull of random walks are 
known: for example, the exact formula for the mean number of facets of the convex 
polytope of a d-dimensional random walk, for d = 2 [25] and d > 2 [26, 27]. But in this 
paper, we will restrict ourselves only to the mean perimeter 〈Ln〉 = 〈S2〉 and the mean 
area 〈An〉 = 〈V2〉 of a planar random walk of n steps and our main goal is to derive 
explicitly not only the leading term in 〈Ln〉 and 〈An〉 for large n, but also the subleading 
terms.

Our strategy is to adapt the mapping between the convex hull of a 2-d process and 
the extreme statistics of the 1-d component process, mentioned above, to the case of 
a single discrete-time planar random walk with generic jump distributions. Using this 
strategy, we are able to compute explicitly the leading and subleading terms of the mean 
perimeter of the convex hull of a planar random walk of n steps with arbitrary symmetric 
continuous jump distributions for large but finite n. The mean area is also computed but 
only for the particular case of isotropic Gaussian jumps. The rest of the paper is orga-
nized as follows. Section 2 outlines the class of considered planar random walks and the 
main results. In section 3, we explain the derivation steps. In section 4, several explicit 
examples are presented and used to illustrate the accuracy of the derived asymptotic 
relations by comparison with Monte Carlo simulations. In section 5, we discuss the main 
results, their applications, and conclusions. Appendicies A and B contain some technical 
details of the derivation and exactly solvable examples, respectively.

2. The model and the main results

We consider a discrete-time random walker in the plane whose jumps are random, 
independent, and identically distributed. Starting from the origin, the walker produces 
a sequence of (n+ 1) points {(x0, y0), (x1, y1), . . . , (xn, yn)} ⊂ R2 after n jumps such that

(x0, y0) = (0, 0), (xk, yk) = (xk−1, yk−1) + (ηxk , η
y
k) (k = 1, 2, . . . , n), (4)

where the jumps �ηk = (ηxk , η
y
k) are independent from step to step, and at each step they 

are drawn from a prescribed joint probability density function (PDF) p(x, y), i.e.
P{ηxk ∈ (x, x+ dx), ηyk ∈ (y, y + dy)} = p(x, y) dx dy . (5)

We emphasize that the starting point (x0, y0) is not random and for convenience, we 
choose (x0 = y0 = 0) to be the origin. The convex hull constructed over these (n+ 1) 

https://doi.org/10.1088/1742-5468/aa8c11
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points is the minimal convex polygon that encloses all these points (see figure 1 for an 
illustration). We are interested in the perimeter Ln and the area An of the convex hull 
which are random variables given that the points are generated as successive positions 
of a planar random walk. We aim at computing exactly the leading and subleading terms 
of the mean perimeter, 〈Ln〉, and the mean area, 〈An〉, of the convex hull for large n.

As explained in section 3, our computation relies on two key results: (i) Cauchy’s 
formula for the perimeter and the area of a closed convex curve, that allows one to 
reduce the original planar problem to the analysis of one-dimensional projections, and 
(ii) the Pollaczek–Spitzer formula describing the distribution of the maximum of partial 
sums of independent symmetric continuously distributed random variables [28, 29]. To 
use the Pollaczek–Spitzer formula, we need thus to assume that the joint probability 
density p(x, y) is continuous and centrally symmetric:

p(−x,−y) = p(x, y). (6)
In particular, our results will not be applicable to a classical random walk on the square 
lattice because its distribution is not continuous. In the following, we outline the main 
results that will be derived in section 3.

The mean perimeter 〈Ln〉 is computed for a very general class of symmetric continu-
ous jump distributions. Writing the Fourier transform of p(x, y) as

ρ̂θ(k) =

∫ ∞

−∞
dx

∫ ∞

−∞
dy p(x, y) eik(x cos θ+y sin θ), (7)

one can characterize the behavior of the mean perimeter according to the asymptotic 
properties of ρ̂θ(k) as k → 0. We assume a general expansion

ρ̂θ(k) � 1− |aθk|µ + o(|k|µ) (k → 0), (8)
with the scaling exponent 0 < µ � 2, and a scale aθ > 0. When 0 < µ � 1, the mean 
perimeter of the convex hull is infinite. We therefore focus on the case 1 < µ � 2.

First, we derive an exact formula for the generating function of 〈Ln〉 which is valid 
for any 1 < µ � 2. Extracting the asymptotic large n behavior of 〈Ln〉 from this general 
formula is, however, nontrivial. We distinguish the following cases.

 (i) When the jump variance is finite (µ = 2), the mean perimeter is shown to behave 
as

〈Ln〉 � C0 n
1
2 + C1 + o(1) (n � 1), (9)

  with

C0 =

√
2√
π

∫ 2π

0

dθ σθ, C1 =

∫ 2π

0

dθ σθ γθ, (10)

  where σθ and γθ are given by

σ2
θ = − lim

k→0

∂2ρ̂θ(k)

∂k2
= 〈(ηx cos θ + ηy sin θ)2〉 = a2θ

2
, (11)

https://doi.org/10.1088/1742-5468/aa8c11
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γθ =
1

π
√
2

∫ ∞

0

dk

k2
ln

(
1− ρ̂θ

(√
2 k/σθ

)
k2

)
. (12)

  If in addition the fourth-order moment of the jump distribution is finite, one 
gains the second subleading term,

〈Ln〉 � C0 n
1
2 + C1 + C2 n

− 1
2 + o(n− 1

2 ) (n � 1), (13)

  with

C2 =
C0

8
+

√
2

24
√
π

∫ 2π

0

dθ σθ Kθ (14)

  and

Kθ =
1

σ4
θ

lim
k→0

∂4ρ̂θ(k)

∂k4
=

〈(ηx cos θ + ηy sin θ)4〉
〈(ηx cos θ + ηy sin θ)2〉2

. (15)

  Higher-order corrections can also be derived under further moments assumptions. 
Note that the integral expression for the coecient C0 in front of the leading term 
n1/2 first appeared in [22]. In section 4, we will show that the asymptotic formula 
(13) is very accurate even for small n.

 (ii) When the jump variance is infinite (i.e. 1 < µ < 2), one needs to consider the 
subleading term in the small k asymptotics of ρ̂θ(k):

ρ̂θ(k) � 1− |aθk|µ + bθ|k|ν + o(|k|ν) (k → 0), (16)

  with the subleading exponent ν > µ and a coecient bθ. Depending on the  
subleading exponent ν, we distinguish two cases:

Figure 1. Illustration of the convex hull of a 7-stepped planar random walk. The 
walk starts at the origin O and makes independent jumps at each step (shown by 
arrows). After 7 steps, the convex hull (shown by dashed red lines) is constructed 
around the points of the trajectory.

https://doi.org/10.1088/1742-5468/aa8c11
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 (1) if µ < ν < µ+ 1, one has

〈Ln〉 � C0 n
1/µ + C1 n

1−(ν−1)/µ + o(n1−(ν−1)/µ) (n � 1), (17)

 with

C0 =
µΓ(1− 1/µ)

π

∫ 2π

0

dθ aθ, (18)

C1 = −Γ((ν − 1)/µ)

π(µ+ 1− ν)

∫ 2π

0

dθ a1−ν
θ bθ. (19)

  Note that the coecient C0 also appears in the mean perimeter of the convex 
hull of continuous-time symmetric stable processes [13].

 (2) if ν > µ+ 1, one has

〈Ln〉 � C0 n
1/µ + C1 + o(1) (n � 1), (20)

 with C0 from equation (18) and

C1 =

∫ 2π

0

dθ γθ, (21)

 where

γθ =
1

π

∫ ∞

0

dk

k2
ln

(
1− ρ̂θ(k)

(ak)µ

)
. (22)

 For instance, for a Lévy symmetric alpha-stable distribution with 
ρ̂(k) = exp(−|ak|µ), one gets [33]

γ = a
ζ(1/µ)

(2π)1/µ sin(π/(2µ))
, (23)

where ζ(z) is the Riemann zeta function.

The obtained results are indeed very general.
In turn, our method of computation of the mean area requires two additional 

strong assumptions: (a) the independence of the jumps along x and y coordinates, i.e. 

p(x, y) = p(x) p(y) and (b) the isotropy of the jump PDF, i.e. p(x, y) should depend only 

on the distance r =
√

x2 + y2 but not on the direction of the jump. According to Porter–
Rosenzweig theorem [30], only the Gaussian jump distribution with identical variance σ2 

along x and y directions, i.e. p(x, y) = 1
2πσ2 exp[−(x2 + y2)/2σ2], satisfies both properties 

(a) and (b). Our result for the mean area is thus only valid for this Gaussian distribution:

σ−2〈An〉 =
π

2
n+ γ

√
8π n

1
2 + π(K/12 + γ2) + o(1), (24)

https://doi.org/10.1088/1742-5468/aa8c11
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with K = 3 and

γ =
ζ(1/2)√

2π
= −0.582 59 . . . (25)

Recently, an exact formula for the mean area of the convex hull of a Gaussian random 
walk was derived [8]. In the isotropic case, the formula reads

σ−2〈An〉 =
1

2

n∑
i=1

n−i∑
j=1

1√
ij
. (26)

While the result in equation (26) is very useful for finite n, deriving the large n asymp-
totics of this double sum (including up to two subleading terms as in equation (24)) 
seems somewhat complicated. Our method, in contrast, gives a more direct access to 
the asymptotics. Moreover, one can check numerically that our asymptotic formula 
(24) agrees accurately with the exact expression (26) even for moderately large n.

The leading term of equation (24) was shown to be valid for a generic random walk 
with increments of a finite variance (see proposition 3.3 in [9]). Moreover, our numer-
ical simulations (see section 4.2 and figure 5) suggest that the obtained formula (24) 
(including the subleading terms) may be applicable for some other isotropic processes. 
In other words, the technical assumption about the independence of the jumps along x 
and y might be relaxed in future. This statement, which is uniquely based on numerical 
simulations for some jump distributions, is conjectural. In turn, the isotropy assump-
tion is important, as illustrated by numerical simulations.

The large n asymptotic relations (13), (17), (20), (24) are the main results of the 
paper. Setting t = nτ  and D = 2σ2/(4τ) with a time step τ, one recovers from equa-
tions (13) and (24) the same leading terms as in equations (1) and (2) for Brownian 
motion (note that we write 2σ2 in D because σ2 is the variance of jumps along one 
direction). It is thus not surprising that the leading term in equation (13) is universal 
because its derivation is valid for any planar random walk with a symmetric and con-
tinuous jump distribution and having a finite variance σ2.

Thinking of Brownian motion as a limit of random walks, the subleading terms in 
equation (13) can be understood as ‘finite size’ corrections. The first subleading term 
is valid under the same assumptions as the leading term, although the coecient γθ 
depends on the jump distribution (see examples in section 4). In turn, the second sub-
leading term depends on the kurtosis Kθ and thus requires an additional assumption 
that Kθ is finite.

3. Main steps leading to the derivation of results

3.1. Reduction to a one-dimensional problem

We start with Cauchy’s formula for the perimeter L and the area A of an arbitrary 
convex domain C with a reasonably smooth boundary γC [15, 16]. Let the boundary γC 
be parameterized as (X(s), Y (s)) with a curvilinear coordinate s ranging from 0 to 1. 
Setting the origin of coordinates inside the domain, one defines the support function 
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M(θ) as the distance from the origin to the closest straight line that does not cross the 
domain and is perpendicular to the vector from the origin in direction θ (figure 2). In 
other words,

M(θ) = max
0�s�1

{
X(s) cos θ + Y (s) sin θ

}
. (27)

Cauchy showed that [15]

L =

∫ 2π

0

dθM(θ), (28)

A =
1

2

∫ 2π

0

dθ
(
M2(θ)− [M ′(θ)]2

)
. (29)

For a simple derivation of this formula see [1]. A straightforward calculation of M(θ) 
for a convex hull over a set of points may seem to be hopeless, as one would need 
first to construct the convex hull by identifying and ordering its vertices among the 
given set of points and then to compute M(θ). The key idea is that M(θ) can be found 
directly from the vertices of the trajectory as [6, 22]

M(θ) = max
0�k�n

{
xk cos θ + yk sin θ

}
. (30)

Moreover, given that the maximum for a fixed θ is realized by a certain vertex (with 
index k∗ which discretely changes with θ), one also obtains the derivative:

M ′(θ) = −xk∗ sin θ + yk∗ cos θ. (31)
When the points (xk, yk) are random, the perimeter and the area of the convex hull 

are random variables. We focus on the mean values 〈Ln〉 and 〈An〉:

〈Ln〉 =
∫ 2π

0

dθ 〈M(θ)〉, (32)

〈An〉 =
1

2

∫ 2π

0

dθ
(
〈M2(θ)〉 − 〈[M ′(θ)]2〉

)
, (33)

i.e. the computation is reduced to the first two moments of M(θ) and to the mean 
〈[M ′(θ)]2〉. The important observation is that, for a fixed direction θ, one needs to char-
acterize the maximum of the projection of points (xk, yk) onto that direction

M(θ) = max
0�k�n

{zθk}, zθk = xk cos θ + yk sin θ. (34)

The projection of a random walk is also a random walk. In fact, we can write according 
to equation (4)

zθ0 = 0, zθk = zθk−1 + ξθk (k = 1, 2, . . . , n), (35)

with

ξθk = ηxk cos θ + ηyk sin θ. (36)
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The probability density of ξθk, ρθ(z), is fully determined by that of the jump (ηxk , η
y
k). In 

particular, its Fourier transform ρ̂θ(k) is related to p(x, y) by equation (7). The sym-
metry (6) implies that ρ̂θ(−k) = ρ̂θ(k) and thus the density ρθ(z) is symmetric.

Having discussed the general jump distributions, let us mention two particular cases 
that will be important later.

 (a) in the case of independent jumps along x and y coordinates, one has 
p(x, y) = px(x) py(y), and thus

ρ̂θ(k) = p̂x(k cos θ) p̂y(k sin θ), (37)

  where p̂x and p̂y are the Fourier transforms of px(x) and py(y), respectively.
 (b) For isotropic jumps, p(x, y) depends only on the radial coordinate, 

p(x, y)dxdy = pr(r)dr dφ/(2π), where pr(r) is the radial density (that includes 
the factor r from the Jacobian). From equation (7), one gets

ρ̂(k) =

∫ ∞

0

dr pr(r) J0(|k|r), (38)

  in which the integration over the angular coordinate φ eliminated the dependence 
on θ and resulted in the Bessel function of the first kind, J0(|k|r).

3.2. Formal solution of the one-dimensional problem

The formal exact solution of the one-dimensional problem can be obtained via the 
Pollaczek–Spitzer formula [28, 29]. This formula characterizes the maximum of partial 
sums of independent identically distributed random variables ξk with a symmetric and 
continuous density ρ(z):

Mn = max{0, ξ1, ξ1 + ξ2, . . . , ξ1 + ξ2 + . . .+ ξn} (39)
(in this subsection, we temporarily drop the subscript and superscript θ from all the 
variables; it will be restored at the end). Considering ξk as jumps of a random walker, 
zk = zk−1 + ξk (with z0 = 0), one can also write

Figure 2. The support function M(θ) for a closed convex curve (left) and for a set 
of points {(x0, y0), (x1, y1), . . . , (xn, yn)} (right). M(θ) is the distance between two 
open circles.
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Mn = max{z0, z1, z2, . . . , zn}. (40)
Pollaczek and later Spitzer showed that the cumulative distribution Qn(z) = P{Mn � z} 
of Mn satisfies the following identity for 0 � s � 1 and λ � 0

∞∑
n=0

sn 〈e−λMn〉 =
∞∑
n=0

sn
∫ ∞

0

dz e−λzQ′
n(z) =

φ(s, λ)√
1− s

, (41)

with

φ(s, λ) = exp

(
−λ

π

∫ ∞

0

dk
ln(1− sρ̂(k))

λ2 + k2

)
, (42)

where Q′
n(z) = dQn(z)/dz is the probability density of the maximum [28, 29]. In prin-

ciple, all the moments of Mn can be obtained from equation (41). However, in practice, 
deriving explicitly the moments of Mn by inverting this formula is highly nontrivial 
[31]. The expected maximum of a discrete-time random walk 〈Mn〉 appears in a num-
ber of dierent problems, from packing algorithms in computer science [32], all the 
way to the survival probability of a single or multiple walkers in presence of a trap 
[33–38]. It has also emerged in the context of the order, gap and record statistics of 
random walks [39–43]. Note that 〈Mn〉 has already been analyzed for large n using the 
Pollaczek–Spitzer formula in equation (41). Here, in addition to calculating the first 
three terms in the asymptotic expansion of 〈Mn〉 for n � 1, we also calculate the large 
n behavior of the second moment 〈M2

n〉, that we need for the computation of the mean 
area of the convex hull.

In fact, the Pollaczek–Spitzer formula determines the generating functions for all 
moments of Mn:

hm(s) =
∞∑
n=0

sn 〈Mm
n 〉 = (−1)m lim

λ→0

∂m

∂λm

φ(s, λ)√
1− s

. (43)

By considering a general asymptotic expansion

ρ̂(k) � 1− |ak|µ + o(|k|µ) (k → 0) (44)
with an exponent 0 < µ � 2 and a scale a > 0, we derive in appendix A.1 the exact 
expressions

h1(s) =
1

π(1− s)

∫ ∞

0

dk

k2
ln

(
1− sρ̂(k)

1− s

)
(0 � s < 1), (45)

which is valid for any 1 < µ � 2 (note that 〈Mn〉 = ∞ for 0 < µ � 1), and

h2(s) = (1− s)[h1(s)]
2 +

a2s

(1− s)2
(0 � s < 1), (46)

which is valid for µ = 2 (note that 〈M2
n〉 = ∞ for 0 < µ < 2). The exact relations (45) 

and (46) are new results which allow one to study the first two moments of the maxi-
mum Mn. In the next subsection, we will analyze the expansion of equations (45) and 
(46) as s → 1 in order to determine the asymptotic behavior of the moments 〈Mn〉 and 
〈M2

n〉 as n → ∞. We consider separately jumps with a finite variance, and Lévy flights.
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3.3. Mean perimeter and mean area of the convex hull

3.3.1. Mean perimeter for jumps with a finite variance. Given a generic continuous 
jump distribution p(x, y) satisfying the property in equation (6), we determine ρ̂θ(k) 
using equation (7). Furthermore, by examining the small k behavior of ρ̂θ(k), we deter-
mine the θ-dependent variance σ2

θ and the θ-dependent kurtosis Kθ, using respectively 
equations (11) and (15). In addition, knowing ρ̂θ(k) from equation (7), we also deter-
mine γθ in equation (12). Equipped with these three quantities σθ, Kθ and γθ, we show 
in appendix A that the leading large n terms of the first two moments of Mn are given 
by

〈Mn〉
σθ

�
√
2√
π
n

1
2 + γθ +

Kθ + 3

12
√
2π

n− 1
2 + o(n− 1

2 ), (47)

〈M2
n〉

σ2
θ

� n+

√
8 γθ√
π

n
1
2 + (Kθ/12 + γ2

θ ) + o(1) . (48)

For the mean perimeter of the convex hull, we will only need the first moment in equa-
tion (47). Indeed, using equation (32), the integration of the expansion (47) over θ from 
0 to 2π yields the announced result (13) for the mean perimeter of the convex hull. The 
result for the second moment in equation (48) will be needed later to determine the 
mean area 〈An〉.

3.3.2. Mean perimeter for Lévy flights. When the variance of jumps is infinite, one 
gets the Taylor expansion equation (8), with the scaling exponent 0 < µ < 2. When 
0 < µ � 1, the mean perimeter of the convex hull is infinite. Throughout this section, 
we focus on the case 1 < µ < 2, in which the first moment of jumps is finite (and zero 
due to the assumption of a symmetric distribution), whereas the variance is infinite. In 
this case, the leading behavior of the mean maximum of partial sums is universal [33]

〈Mn〉 � aθ
µΓ(1− 1/µ)

π
n1/µ + o(n1/µ) (n � 1). (49)

However, the subleading term depends on finer details of the jump distribution. In order 
to determine the subleading term, we consider the expansion (16) with the subleading 
term bθ|k|ν such that ν > µ. We distinguish two cases: µ < ν < µ+ 1 and ν > µ+ 1. In 
appendix A.3, we derive the following asymptotics results:

〈Mn〉 � aθ
µΓ(1− 1/µ)

π
n1/µ − a1−ν

θ bθ
Γ((ν − 1)/µ)

π(µ+ 1− ν)
n1−(ν−1)/µ + o(n1−(ν−1)/µ) (n � 1)

 (50)
for µ < ν < µ+ 1, and

〈Mn〉 � aθ
µΓ(1− 1/µ)

π
n1/µ + γθ + o(1) (n � 1) (51)

for ν > µ+ 1, with γθ given by equation (22). The asymptotic relation (51) was first 
derived in [33] for the particular case ν = 2µ. One can see that for µ < ν < µ+ 1, the 
subleading term of 〈Mn〉 grows with n, whereas for when ν > µ+ 1, the subleading term 
is constant. Higher-order corrections can be derived as well.
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Finally, using the Cauchy formula (32), the integration of equations (50) and (51) 
over θ from 0 to 2π yields equations (17) and (20) for the mean perimeter of the convex 
hull, announced in section 2.

3.3.3. Mean area for isotropic Gaussian jumps. According to equation (33), the expan-
sion (48) determines the first contribution to the mean area. This contribution was 
calculated for an arbitrary symmetric continuous jump distribution with a finite vari-
ance. The second contribution to the mean area comes from 〈[M ′(θ)]2〉 that has to be 
computed separately. We recall that M ′(θ) is given by equation (31). Our computation 
of this contribution relies on two additional simplifying assumptions: (a) the jumps 
along x and y coordinates are independent and (b) the jump process is isotropic, i.e. the 
distribution of jumps does not depend on their direction. In this case, using the isotropy 
condition (b), we get

〈[M(θ)]2〉 = 〈[M(0)]2〉 = 〈x2
k∗〉, (52)

〈[M ′(θ)]2〉 = 〈[M ′(0)]2〉 = 〈y2k∗〉. (53)

The disentanglement of 〈[M(θ)]2〉 and 〈[M ′(θ)]2〉 allows one to compute the latter one 
by using the following argument. We recall that k∗ is the index of the maximal posi-
tion among xk, i.e. its statistics is fully determined by the jumps along x coordinate. 
Once this statistics is known, the mean 〈[M ′(0)]2〉 can be found by taking the condi-
tional expectation of y2k∗ at any fixed value k∗ and then the expectation with respect to 
the distribution of k∗. Now, once we condition k∗, i.e. the time step at which the xk’s 
achieve their maximum, the yk process will, in general, be aected by this conditioning. 
However, if xk and yk are independent (which happens when the jump process satisfies 
property (a) above), we get

〈[M ′(0)]2〉 = σ2 〈k∗〉, (54)

where 〈[ηyk ]2〉 = σ2. It remains to find 〈k∗〉. For symmetric and continuous jump dis-
tributions, it follows from symmetry that 〈k∗〉 = n/2 independent of the details of the 
jump PDF. This can be deduced formally also, by noting that the time step k∗, at 
which the maximum of xk is achieved, has a universal distribution, independent of the 
jump distribution (given that the latter is continuous and symmetric) [31]:

Pn(k
∗ = k) =

(
2k

k

)(
2(n− k)

n− k

)
2−2n. (55)

This is the direct consequence of the Sparre Andersen theorem. From this distribution, 
one easily computes the mean value as

〈k∗〉 = n

2
, (56)

and thus

〈[M ′(θ)]2〉 = σ2 n

2
. (57)

This yields equation (24) for the mean area of the convex hull for an isotropic jump 
 process with independent jumps along x and y coordinates. As discussed in section 2, 
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the only process satisfying two requirements (a) and (b) is the isotropic Gaussian pro-
cess. Our formula (24) is thus provided only in this case. For a more general case, one 
would need to compute the joint distribution of the maximum position k∗ and both 
values xk∗ and yk∗ which is more complicated and remains an open problem.

4. Examples and simulations

In this section, we illustrate the above general results on several examples of symmetric 
planar random walks. We derive the explicit values of the relevant parameters that 
determine the mean perimeter and the mean area. We also investigate the eect of 
anisotropy of the jump distribution on the convex hull properties. Finally, we compare 
our theoretical predictions to the results of Monte Carlo simulations. For this purpose, 
we generate 105 planar random walks, compute the convex hull for each generated tra-
jectory with n+ 1 points by using the Matlab function ‘convhull’, and determine its 
perimeter and area. These simulations yield the representative statistics of perimeters 
and areas from which the mean values are computed.

4.1. Gaussian jumps

We first consider the basic example of Gaussian jumps which are independent along 

x and y coordinates and characterized by variances σ2
x and σ2

y. Substituting the jump 
probability density,

p(x, y) =
exp

(
− x2

2σ2
x

)
√
2π σx

exp
(
− y2

2σ2
y

)
√
2π σy

, (58)

into equation (7) yields ρ̂θ(k) = e−k2σ2
θ/2, with σ2

θ = σ2
x cos

2 θ + σ2
y sin

2 θ. One can see 
that the anisotropy only aects the variance σ2

θ , whereas the two other relevant param-
eters, γ and K, which are rescaled by variance, do not depend on θ. One finds K = 3, 
whereas the integral in equation (12) was computed exactly in [33] and provided in 
equation (25). Assuming (without loss of generality) that σx � σy, we set

σ ≡ 1

2π

∫ 2π

0

dθ σθ =
2

π
E

(√
1− (σy/σx)2

)
σx, (59)

where E(k) is the complete elliptic integral of the second kind (for the isotropic case, 
σx = σy = σ). With this notation, we get the expansion coecients

σ−1C0 =
√
8π, σ−1C1 = 2πγ = −3.6605 . . . , σ−1C2 =

√
π√
2
. (60)

Figure 3 shows the rescaled mean perimeter, 〈Ln〉/n1/2, and the rescaled mean 
area, 〈An〉/n, for isotropic planar random walk with independent Gaussian jumps 
(σx = σy = 1). The results of Monte Carlo simulations are in perfect agreement with 
our theoretical predictions (13) and (24). One can see that the subleading terms play an 
important role. In fact, if one kept only the leading term and omitted the subleading 
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terms, one would get the horizontal dotted line. This corresponds to the case of 
Brownian motion, in which only the leading term is present, see equations (1) and (2). 
The subleading terms account for the discrete-time character of random walks which 
is particularly important for moderate values of n. In order to highlight the role of the 
third term in the asymptotic expansions, we also draw by dashed line the asymptotics 
without this term. As expected, the third term improves the quality of the theoretical 
prediction at small n. Note also that the asymptotic relation is slightly less accurate 
for the mean area.

In figure 4, we consider the convex hull for anisotropic random walk with inde-
pendent Gaussian jumps, with σx = 5 and σy = 1. In this case, one can use the 
asymptotic formula (13), in which the expansion coecients Cj are given by equa-
tion (60), with an eective variance σ2 computed in equation (59). In this example, 

σ = 5 2
π
E
(√

1− 1/25
)
= 3.3439 . . .. For the mean perimeter, one observes a perfect 

agreement between the theoretical predictions and Monte Carlo simulations. In turn, 
our asymptotic formula (24) for the mean area is not applicable for anisotropic case, as 
also confirmed by simulations (not shown).

4.2. Exponentially distributed radial jumps

The next common model has exponentially distributed radial jumps with uniform 
angular distribution. This is a particular realization of a ‘run-and-tumble’ model of 
bacterial motion [44–46]. Substituting the radial density pr(r) = σ−1 e−r/σ into equa-

tion (38) yields ρ̂(k) =
(
1 + (kσ)2

)−1/2. One gets K = 9 and

γ =
1

π
√
2

∫ ∞

0

dk

k2
ln

(
1−

(
1 + 2k2

)−1/2

k2

)
= −0.8183 . . . (61)

from which the expansion coecients are

σ−1C0 =
√
8π, σ−1C1 = −5.1416 . . . , σ−1C2 =

√
2π. (62)

Figure 3. The rescaled mean perimeter, 〈Ln〉/n1/2, (left), and the rescaled mean 
area, 〈An〉/n, (right), for isotropic planar random walks with independent Gaussian 
jumps, with σx = σy = 1. The results of Monte Carlo simulations (shown by circles) 
are in perfect agreement with our theoretical predictions (13) and (24) (shown by 
solid line). The dotted horizontal line presents the coecients 

√
8π  and π/2 of the 

leading term, whereas the dashed line illustrates the theoretical predictions with 
only two principal terms.
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Figure 5 illustrates the obtained results. As for isotropic Gaussian jumps, there is 
a perfect agreement between theory and simulations for the mean perimeter. We also 
present the results for the mean area. We recall that the theoretical formula (24) was 
derived under the assumption of independent jumps along x and y coordinates, which 
evidently fails for the exponential radial jumps. In spite of this failure, the theor-
etical formula (24) is in perfect agreement with Monte Carlo simulations, except for 
very small n. This empirical observation suggests a possibility to relax this technical 
assumption in future, at least for large n.

4.3. Independent exponentially distributed jumps

We also consider the case, when the jumps along x and y coordinates are inde-

pendent and exponentially distributed, with two densities px(x) =
1
2
σ−1
x e−|x|/σx 

and py(y) =
1
2
σ−1
y e−|y|/σy. The Fourier transforms are p̂x(k) = (1 + (kσx)

2)−1 and 
p̂y(k) = (1 + (kσy)

2)−1 so that

ρ̂θ(k) =
1

1 + (kσx)2 cos2 θ

1

1 + (kσy)2 sin
2 θ

. (63)

We get σ2
θ = 2(σ2

x cos
2 θ + σ2

y sin
2 θ) and

Kθ = 24
σ4
x cos

4 θ + σ2
xσ

2
y sin

2 θ cos2 θ + σ4
y sin

4 θ

σ4
θ

. (64)

Using the identity (B.2), we compute explicitly

γθ =

√
2σxσy| sin θ cos θ| − σθ(σx| cos θ|+ σy| sin θ|)

σ2
θ

. (65)

In the particular case σx = σy = σ, one gets σ2
θ = 2σ2, Kθ = 6(1− sin2 θ cos2 θ), and

Figure 4. The rescaled mean perimeter, 〈Ln〉/n1/2, for anisotropic planar random 
walk with independent Gaussian jumps, with σx = 5 and σy = 1. The results of 
Monte Carlo simulations (shown by circles) are in perfect agreement with our 
theoretical prediction (13) (shown by solid line). The dotted horizontal line presents 

the coecient σ
√
8π of the leading term (with σ = 5 2

π
E
(√

1− 1/25
)
= 3.3439 . . .), 

whereas the dashed line illustrates the theoretical predictions with only two principal 
terms.
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γθ =
| sin θ cos θ| − | cos θ| − | sin θ|√

2
. (66)

For this case, we obtain from equation (10)

σ−1C0 = 4
√
π, σ−1C1 = −6, σ−1C2 =

11
√
π

8
. (67)

Figure 6 illustrates the excellent agreement between theory and simulations.

4.4. Radial Lévy jumps

Now, we investigate the example of radial Lévy flights with infinite variance (but finite 
mean) and uniform angle distribution. Among various heavy-tailed jump distributions 
(e.g. Pareto distributions), we choose for our illustrative purposes the distribution

P{ξ > r} =
(
1 + (r/R)2

)−α
, (68)

with a scale R > 0 and the scaling exponent µ = 2α, with 1
2
< α < 1. For this distribu-

tion, equation (38) yields a simple closed formula [47]

ρ̂(k) =
21−α

Γ(α)
(|k|R)αKα(|k|R), (69)

where Kα(z) is the modified Bessel function of the second kind. The asymptotic behav-
ior of Kα(z) near z implies as k → 0

ρ̂(k) � 1− π (|k|R)2α

22α sin(πα)Γ(α)Γ(α + 1)
+

(kR)2

4(1− α)
+O(|k|2+2α). (70)

Comparing this expansion to equation (16), one can identify

a = R

(
π

22α sin(πα)Γ(α)Γ(α + 1)

) 1
2α

, b =
R2

4(1− α)
, ν = 2. (71)

Figure 5. The rescaled mean perimeter, 〈Ln〉/n1/2, (left), and the rescaled mean area, 
〈An〉/n, (right), for isotropic planar random walk with exponentially distributed 
radial jumps, with σ = 1. The results of Monte Carlo simulations (shown by circles) 
are in perfect agreement with our theoretical predictions (13) and (24) (shown by 
solid line). The dotted horizontal line presents the coecient 

√
8π  and π/2 of the 

leading term, whereas the dashed line illustrates the theoretical predictions with 
only two principal terms.
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In figure 7, the mean perimeter computed by Monte Carlo simulations for µ = 1.5 and 
R = 1 is compared to the theoretical prediction (17). One can see that the agreement is 
good but worse than for the earlier examples with a finite variance. One obvious reason 
is that here we have determined only two terms, whereas equation (13) contains three 
terms.

4.5. Independent Lévy α-stable symmetric jumps

Finally, we investigate Lévy α-stable symmetric jumps, with independent displace-
ments along x and y coordinates given by p̂x(k) = p̂y(k) = exp(−|ak|µ), with 1 < µ < 2. 
Using equation (37), one gets thus ρ̂θ(k) = exp(−|aθk|µ), with

aθ = a
(
| cos θ|µ + | sin θ|µ

)1/µ
. (72)

so that ν = 2µ, and bθ = a2θ/2. The mean perimeter is determined by equation (20), 
with

C0 = a
µΓ(1− 1/µ)

π

∫ 2π

0

dθ
(
| cos θ|µ + | sin θ|µ

)1/µ
, (73)

and γ given by equation (23) which is independent of θ.
For µ = 3/2, we obtain numerically a−1C0 = 8.6275 . . . and a−1C1 = −5.2151 . . .. 

Figure 8 shows the good agreement between the theoretical prediction (20) and Monte 
Carlo simulations.

5. Discussion and conclusion

To summarize, we have presented exact asymptotic results for the mean perimeter of 
the convex hull of an n-step discrete-time random walk in a plane, with a generic con-
tinuous jump distribution satisfying the central symmetry assumption in equation (6). 

Figure 6. The rescaled mean perimeter, 〈Ln〉/n1/2, for anisotropic planar random 
walk with independent exponentially distributed jumps, with σx = σy = 1. The 
results of Monte Carlo simulations (shown by circles) are in perfect agreement with 
our theoretical prediction (13) (shown by solid line). The dotted horizontal line 
presents the coecient 4

√
π  of the leading term, whereas the dashed line illustrates 

the theoretical predictions with only two principal terms.
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Explicit results, along with simulations confirming them have been presented for several 
examples of such jump distributions. For the mean area of the convex hull, we have 
derived exact results for isotropic Gaussian jump distributions. For jumps with a finite 
variance, our results provide precise estimates of the deviations from the Brownian 
limit and explain the discrepancies between the asymptotic Brownian limit results and 
observed simulations for finite but large n.

The obtained results are particularly valuable for applications dealing with dis-
crete-time random processes, e.g. home range estimation in ecology. Given that the 
tracks of animal displacements are typically recorded at discrete time steps (e.g. daily 
observations) and relatively short, the subleading terms play an important role. The 
asymptotic formulas can also be used for calibrating new estimators, based on the local 
convex hull, that were proposed for the analysis of intermittent processes in microbiol-
ogy [21]. Finally, the knowledge of the mean perimeter of the convex hull can be used 
to estimate the scaling exponent and the scale of symmetric Lévy flights, for which the 
conventional mean and variance estimators are useless.

There are many interesting open problems that may possibly be addressed using 
the methods presented here. For example, the numerical evidence suggests a possible 

Figure 7. The rescaled mean perimeter, 〈Ln〉/n1/µ, for isotropic planar random walk 
with radial Lévy flights whose lengths are distributed according to equation (68) 
with µ = 1.5 and R = 1. The results of Monte Carlo simulations (shown by circles) 
agree well with the theoretical prediction (17) (shown by the solid line).

Figure 8. The rescaled mean perimeter, 〈Ln〉/n1/µ, for anisotropic planar random 
walk with independent Lévy α-stable jump distribution with µ = 1.5 and a = 1. 
The results of Monte Carlo simulations (shown by circles) agree well with the 
theoretical prediction (20) (shown by the solid line).
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extension of the derived asymptotic formula for the mean area to other isotropic pro-
cesses, beyond the Gaussian case. Also, it would be interesting to extend our results to 
the case of the convex hull of planar discrete-time random bridges (where the walker 
is constrained to come back to the starting point after n discrete jumps). For such 
discrete-time bridges, there are recent exact results on the statistics of the first two 
maximum and the gap between them [48] which may be useful for the convex hull 
problem. One can also consider the problem with many independent discrete-time 
walkers. Finally, it would be interesting to study the statistics of the perimeter and the 
area for random walks with jump distributions that violate the reflection property in 
equation (6), for example, for walks in presence of a drift or a potential.
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Appendix A. Asymptotic analysis

In this appendix, we derive the main results (47) and (48). The derivation is based on 
the asymptotic analysis of the Pollaczek–Spitzer identity (41) and extends the earlier 
results from [33]. Since the function φ(s, λ) from equation (42) is related to the Laplace 
transform of the probability density Q′

n(z), it determines the generating functions 
hm(s) of the moments 〈Mm

n 〉 via equation (43). In turn, the asymptotic behavior of 
hm(s) as s → 1 determines the asymptotic behavior of 〈Mm

n 〉 as n → ∞.

A.1. Derivation of generating functions

We recall that Mn denotes the maximum of partial sums of independent identically 
distributed random variables {ξk}:

Mn = max{0, ξ1, ξ1 + ξ2, . . . , ξ1 + . . .+ ξn}. (A.1)
We assume that the jump distribution is symmetric and continuous, whereas its char-
acteristic function ρ̂(k) admits the expansion

ρ̂(k) = 1− |ak|µ + . . . (k → 0), (A.2)
with an exponent 0 < µ � 2 and a scale a > 0.

First, we derive the generating function h1(s) from the Pollaczek–Spitzer formula 
(41). For this purpose, we need to determine the expansion of this formula in powers of 
λ for small λ. Let us first write

φ(s, λ) = exp [−I(s, λ)] , I(s, λ) =
λ

π

∫ ∞

0

dk

k2 + λ2
ln (1− s ρ̂(k)) . (A.3)

It is easy to obtain the λ → 0 limit of I(s, λ). We rescale k = λu in equation (A.3) and 
take the λ → 0 limit. This gives, using ρ̂(k = 0) = 1, a very simple expression
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I(s, 0) =
1

π

∫ ∞

0

du

1 + u2
ln(1− s) =

1

2
ln(1− s). (A.4)

Next we re-write

φ(s, λ) = exp [−I(s, λ)] = exp [−I(s, 0)] exp [− (I(s, λ)− I(s, 0))]

=
1√
1− s

exp

[
−λ

π

∫ ∞

0

dk

λ2 + k2
ln

(
1− s ρ̂(k)

1− s

)]
. (A.5)

Expanding the right-hand side of equation (A.5) up to the first order λ for small λ (with 
s fixed) gives

φ(s, λ) � 1√
1− s

[
1− λ

π

∫ ∞

0

dk

k2
ln

(
1− s ρ̂(k)

1− s

)
+ o(λ)

]
. (A.6)

Note that the integral in the second term is convergent for any jump pdf with ρ̂(k) 
satisfying equation (A.2) provided 1 < µ � 2. Taking the derivative with respect to λ, 
evaluated at λ = 0, yields

h1(s) =
∞∑
n=0

sn 〈Mn〉 =
1

π(1− s)

∫ ∞

0

dk

k2
ln

(
1− s ρ̂(k)

1− s

)
. (A.7)

Note that this is an exact result for any jump PDF ρ̂(k) satisfying equation (A.2) with 
1 < µ � 2 and it also holds for arbitrary s such that the generating function on the 
left-hand side of equation (A.7) is convergent. In turn, when 0 < µ � 1, the mean value 
〈Mn〉 is infinite, and h1(s) is undefined.

The second moment 〈M2
n〉 is finite only for µ = 2. Expanding equation (A.5) up to 

the order λ2 for small λ (with s fixed) and taking the second derivative with respect to 
λ at λ = 0, one gets for any 0 � s < 1

h2(s) =
∞∑
n=0

sn 〈M2
n〉 = (1− s)[h1(s)]

2 +
a2s

(1− s)2
. (A.8)

A.2. Jumps with a finite variance

Here we investigate the asymptotic behavior of h1(s) as s → 1 for the jump distribution 
with a finite variance σ2 so that ρ̂(k) � 1− k2σ2/2 + o(k2). First, we represent h1(s) 
from equation (45) as

h1(s) =
1

π(1− s)

∫ ∞

0

dk

k2

{
ln

(
1− s(1− k2σ2/2)

1− s

)
+ ln

(
1− sρ̂(k)

1− s(1− k2σ2/2)

)}
.

 

(A.9)

The first integral can be computed explicitly, so that

h1(s) =
σ
√

s/2

(1− s)3/2
+

Iε
1− s

, (A.10)

where Iε denotes the second integral in equation (A.9) that we rewrite as
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Iε =
1

π

∫ ∞

0

dk

k2
ln

(
1− (1− ε2)ρ̂(k)

σ2k2/2 + ε2(1− σ2k2/2)

)
, (A.11)

with ε =
√
1− s. Setting ε → 0, one gets

I0 =
1

π

∫ ∞

0

dk

k2
ln

(
1− ρ̂(k)

σ2k2/2

)
= σ γ, (A.12)

with the constant γ from equation (12), with σ = σθ.
Next, we consider

Iε − I0 =
1

π

∫ ∞

0

dk

k2
ln

(
1− (1− ε2)ρ̂(k)

1
2
σ2k2 + ε2(1− 1

2
σ2k2)

1
2
σ2k2

1− ρ̂(k)

)
. (A.13)

Changing again the integration variable, one has

Iε − I0 =
1

πε

∫ ∞

0

dk

k2
ln

(
1− (1− ε2)ρ̂(kε)

1
2
σ2k2 + (1− 1

2
σ2ε2k2)

1
2
σ2k2

1− ρ̂(kε)

)
. (A.14)

To get the next-order term, we assume the existence of the fourth-order moment of the 
jumps so that

ρ̂(kε) � 1− 1

2
σ2k2ε2 + cσ4k4ε4 + o(ε4), (A.15)

where c = K/24 is related to the kurtosis K given by equation (15). Substituting this 
expansion into equation (A.14), one gets

Iε − I0 �
1

πε

∫ ∞

0

dk

k2
ln

(
1− ε2k4cσ4

1+σ2k2/2

1− 2k2ε2cσ2

)
� 1

πε

∫ ∞

0

dk
2cε2σ2

1 + σ2k2/2
= ε

√
2 c σ.

 

(A.16)

Combining these results, we conclude that

h1(s) �
σ√

2 (1− s)3/2
+

σγ

1− s
+

σ(K/6− 1)√
8 (1− s)1/2

+ o((1− s)−1/2) (s → 1).

 

(A.17)

Substituting this expansion into equation (46), one gets

h2(s) =
σ2

(1− s)2
+

√
2σ2γ

(1− s)3/2
+

σ2(K/12 + γ2 − 1)

(1− s)
+ o((1− s)−1) (s → 1).

 

(A.18)

In order to invert the relations (A.17) and (A.18), we use the following identities:
∞∑
n=0

snan =
1

(1− s)1/2
,

∞∑
n=0

sn =
1

1− s
, (A.19)

∞∑
n=0

snbn =
1

(1− s)3/2
,

∞∑
n=0

(n+ 1)sn =
1

(1− s)2
, (A.20)
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with

an =

(
2n

n

)
2−2n � 1√

πn

(
1− 1

8n
+O(n−2)

)
, (A.21)

bn = (2n+ 1)

(
2n

n

)
2−2n � 2

√
n√
π

(
1 +

3

8n
+O(n−2)

)
. (A.22)

Inverting term by term, we obtain the main relations (47) and 48). Higher-order correc-
tions can be obtained in the same way.

A.3. Lévy flights

For Lévy flights with ρ̂(k) � 1− |ak|µ + o(|k|µ), one can derive the asymptotic behav-
ior of h1(s) as s → 1 for the case 1 < µ < 2. In this case, we replace the representation 
(A.9) by

h1(s) =
1

π(1− s)

∫ ∞

0

dk

k2

{
ln

(
1− s(1− (ak)µ)

1− s

)
+ ln

(
1− sρ̂(k)

1− s(1− (ak)µ)

)}
.

 

(A.23)

As previously, the first integral can be evaluated explicitly so that

h1(s) =
a s1/µ

(1− s)1+1/µ

1

sin(π/µ)
+

Iε
1− s

, (A.24)

where

Iε =
1

π

∫ ∞

0

dk

k2
ln

(
1− (1− ε2)ρ̂(k)

ε2 + (1− ε2)(ak)µ

)
, (A.25)

with ε =
√
1− s. The first term in equation (A.24) provides the leading contribution. 

Using the discrete form of the Tauberian theorem,
∞∑
n=0

ans
n =

1

(1− s)α
⇒ an � nα−1

Γ(α)
(n � 1), (A.26)

one gets the leading term to 〈Mn〉 to be (aµΓ(1− 1/µ)/π)n1/µ.
In order to compute the subleading term, one needs to analyze the integral Iε whose 

behavior depends on the next-order term in the small k expansion of ρ̂(k) in equa-
tion (16). Formally setting ε = 0 in equation (A.25), one would get

I0 =
1

π

∫ ∞

0

dk

k2
ln

(
1− ρ̂(k)

(ak)µ

)
. (A.27)

Substituting the expansion (16) into this integral, one gets the factor ln(1− bkν−µ/aµ). 
As a consequence, the integral converges when ν − µ > 1 and diverges otherwise. This 
condition naturally distinguishes two asymptotic regimes: ν > µ+ 1 and ν � µ+ 1. In 
the former case, the integral converges, and the two principal terms in h1(s) are

h1(s) �
a s1/µ

(1− s)1/µ
1

sin(π/µ)
+

I0
1− s

+ o((1− s)−1) (s → 1), (A.28)
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where I0 is identical to γ from equation (22). The inversion of this relation yields 
equation (51).

In the case ν � µ+ 1, the subtraction of the term with 1− |ak|µ in equation (A.23) 
was not sucient to get the convergent correction term. We remedy this problem by 
using another representation:

h1(s) =
1

π(1− s)

∫ ∞

0

dk

k2

{
ln

(
1− s(1− (ak)µ + bkν)

1− s

)

+ ln

(
1− sρ̂(k)

1− s(1− (ak)µ + bkν)

)}
.

 

(A.29)

Changing the variable u = ak(s/(1− s))1/µ, we rewrite the first term as

as1/µ

π(1− s)1+1/µ

∫ ∞

0

du

u2
ln
(
1 + uµ − Cuν

)
, (A.30)

with C = ba−νs−ν/µ(1− s)ν/µ. When s → 1, C is small, and one can expand the loga-
rithm to get

as1/µ

π(1− s)1+1/µ

∫ ∞

0

du

u2

{
ln
(
1 + uµ)− Cuν

1 + uµ

}
. (A.31)

Now both integrals are convergent. The first integral yields the same leading term as 
earlier, whereas the second term provides the subleading correction. Finally, the second 
term in equation (A.29) results in higher-order corrections that we ignore. Keeping only 
the leading term and the first subleading term, we get as s → 1

h1(s) �
a s1/µ

(1− s)1/µ
1

sin(π/µ)
− b a1−ν

(1− s)1+(1−ν)/µ

1

µ sin(π(ν − 1)/µ)

(
1 + o(1)

)
.

 

(A.32)

The inversion of this relation yields the large n asymptotic formula (50) for 〈Mn〉.

Appendix B. Two exactly solvable examples

In this appendix, we briefly discuss two distributions, for which the function φ(s, λ) can 

be found exactly: the symmetric exponential distribution ρ(z) = 1
2
e−|z| (see [33]) and 

its modification ρ(z) = 1
2
|z|e−|z|. These examples served us as benchmarks for checking 

general results.

B.1. Symmetric exponential distribution

When ρ(z) = 1
2
e−|z|, one gets ρ̂(k) = (1 + k2)−1 and thus equation (42) becomes

φ(s, λ) =
1 + λ√
1− s+ λ

, (B.1)
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where we used the identity
∫ ∞

0

dk
ln(a2 + b2k2)

λ2 + k2
=

π

λ
ln
(
a+ λb) (B.2)

to compute the integral:
∫ ∞

0

dk
ln(1− s/(1 + k2))

λ2 + k2
=

π

λ
ln

(√
1− s+ λ

1 + λ

)
. (B.3)

According to equations (11), (15) and (12), we also obtain

σ2 = 2, K = 6, γ = − 1√
2
. (B.4)

The first derivative of φ(s, λ) from equation (B.1) yields

h1(s) =
∞∑
n=0

sn〈Mn〉 =
1

(1− s)3/2
− 1

1− s
, (B.5)

from which, using equations (A.19) and (A.20), one retrieves the exact form of the first 
moment, which is valid for any n and was first derived in [33]:

〈Mn〉 = (2n+ 1)

(
2n

n

)
2−2n − 1. (B.6)

Using the Stirling formula, one can get the large n expansion to any order:

σ−1〈Mn〉 �
√
2√
π
n

1
2 − 1√

2
+

3

4
√
2π

n− 1
2 − 7

64
√
2π

n− 3
2 +O(n− 5

2 ). (B.7)

The first three terms agree with the general expansion (47).
Similarly, we get from equation (B.1)

h2(s) =
∞∑
n=0

sn〈M2
n〉 =

2

(1− s)2
− 2

(1− s)3/2
, (B.8)

from which the exact formula follows using equations (A.19) and (A.20)

σ−2〈M2
n〉 = (n+ 1)− (2n+ 1)

(
2n

n

)
2−2n. (B.9)

In the large n limit, we deduce

σ−2〈M2
n〉 � n− 2√

π
n

1
2 + 1− 3

4
√
π
n− 1

2 +
7

64
√
π
n− 3

2 +O(n− 5
2 ). (B.10)

The first three terms agree with the general expansion (48).
Note that one can also obtain the generating function for the cumulative distribu-

tion Qn(z). In fact, one has for the Laplace transform of Qn(z)
∞∑
n=0

snL{Qn(z)}(λ) =
1 + λ

λ
√
1− s(

√
1− s+ λ)

, (B.11)
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from which the inverse Laplace transform (with respect to λ) yields
∞∑
n=0

sn Qn(z) =
1

1− s
−

(
1

1− s
− 1√

1− s

)
e−z

√
1−s. (B.12)

From this relation, one can easily get any generating function hm(s).

B.2. Modified exponential distribution

For the case ρ(z) = 1
2
|z|e−|z|, one gets

ρ̂(k) =
1− k2

(1 + k2)2
. (B.13)

Using again equation (B.2), one computes the integral in equation (42) as
∫ ∞

0

dk
ln(1− sρ̂(k))

λ2 + k2
=

π

λ
ln

(
(µ+(s) + λ)(µ−(s) + λ)

(1 + λ)2

)
, (B.14)

where

µ±(s) =

√
2 + s±

√
s2 + 8s

2
. (B.15)

We get thus

φ(s, λ) =
(1 + λ)2

(µ+(s) + λ)(µ−(s) + λ)
. (B.16)

According to equations (11), (15) and (12), we also obtain

σ2 = 6, K =
10

3
, γ =

1

3
√
2
− 2√

6
. (B.17)

Taking the first derivative of φ(s, λ) from equation (B.16) with respect to λ yields

h1(s) =
−1√
1− s

2µ−µ+ − (µ+ + µ−)

µ2
+ µ2

−
. (B.18)

Since µ−µ+ =
√
1− s, µ2

+ + µ2
− = 2 + s, and µ+ + µ− =

√
2 + s+ 2

√
1− s, we get

h1(s) =

√
2 + s+ 2

√
1− s

(1− s)3/2
− 2

1− s
. (B.19)

Expanding near s → 1, one obtains

h1(s) �
√
3

(1− s)3/2
+

1√
3
− 2

1− s
− 2

3
√
3(1− s)1/2

+O(1), (B.20)

from which

σ−1〈Mn〉 �
√
2√
π
n

1
2 + γ − 19

36
√
2π

n− 1
2 +O(n− 3

2 ), (B.21)
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in agreement with the general expansion (47).
Similarly, we compute h2(s) as the second derivative of φ(s, λ):

h2(s) = 2
µ−µ+ + µ2

−µ
2
+ − 2µ−µ+(µ− + µ+) + µ2

+ + µ2
−√

1− s µ3
+ µ3

−

=
6

(1− s)2
+

2− 4
√

2 + s+ 2
√
1− s

(1− s)3/2
.

 (B.22)

As s → 1, one gets

h2(s) �
6

(1− s)2
+

2− 4
√
3

(1− s)3/2
− 4/

√
3

(1− s)
+O((1− s)−1/2), (B.23)

from which

σ−2〈M2
n〉 � n+ γ

2√
π
n

1
2 + 1− 2

3
√
3
+O(n− 1

2 ), (B.24)

in agreement with the general expansion (48).
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