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Abstract
A topic of intense current investigation pursues the question of how the highly crowded environment
of biological cells affects the dynamic properties of passively diffusing particles.Motivated by recent
experiments we report results of extensive simulations of themotion of afinite sized tracer particle in a
heterogeneously crowded environmentmade up of quenched distributions ofmonodisperse crowders
of varying sizes infinite circular two-dimensional domains. For given spatial distributions of
monodisperse crowders we demonstrate how anomalous diffusionwith strongly non-Gaussian
features arises in thismodel system.We investigate both biologically relevant situations of particles
released either at the surface of an inner domain or at the outer boundary, exhibiting distinctly
different features of the observed anomalous diffusion for heterogeneous distributions of crowders.
Specifically we reveal an asymmetric spreading of tracers even atmoderate crowding. In addition to
themean squared displacement (MSD) and local diffusion exponent we investigate themagnitude and
the amplitude scatter of the time averagedMSDof individual tracer trajectories, the non-Gaussianity
parameter, and the vanHove correlation function.We also quantify how the average tracer diffusivity
varies with the position in the domainwith a heterogeneous radial distribution of crowders and
examine the behaviour of the survival probability and the dynamics of the tracer survival probability.
Inter alia, the systemswe investigate are related to the passive transport of lipidmolecules and proteins
in two-dimensional crowdedmembranes or themotion in colloidal solutions or emulsions in
effectively two-dimensional geometries, as well as inside supercrowded, surface adhered cells.

1. Introduction

The cytoplasmic fluid of living cells is a superdensemedium [1–3], inwhich biomacromolecules occupy volume
fractions reachingwell above 30% [4–8]. Thismacromolecular crowding (MMC) affects the diffusion of larger
passivemolecules, endogenous as well as artificially introduced submicron tracer particles, and cellular
components [9]. One of the central observations is the existence of transient but often very extended anomalous
diffusion [10, 11]with the sublinear scaling

t K tr 12( ) ( )á ñ b
b

of themean squared displacement (MSD) of the diffusing particles with the anomalous diffusion exponent in the
subdiffusive range 0 1b< < [9, 12]. HereKβ is the generalised diffusion coefficient with units cm sec2 b .
Subdiffusion in the crowded cytoplasmof living cells was observed forfluorescent smaller proteins [13, 14],
labelled polymeric dextrane [15] andmessenger RNA [1, 16], chromosomal loci and telomeres [16, 17], as well as
submicron endogenous granules [18–20] and viruses [21]. Subdiffusionwas also reported for themotion of
tracer particles in artificially crowded environments [22–30].We note that active transport processes in living
cellsmay lead to superdiffusionwith 1 2b< < [31–35].
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Similarly to the volume crowding, cellularmembranes are highly crowded interfaces with up to 25%of the
total area [36] occupied by variousmembrane proteins, ion channels, and pores [37]. Byfluorescent correlation
spectroscopy and single particle trackingmethods anomalous diffusion of the form (1)wasmeasured for both
membrane embedded proteins [37–39] and lipidmolecules [40]. These experimental findings are corroborated
bymolecular dynamics as well as coarse grained simulations [41–46]. Inmodelmembranes as the one shown in
figure 1 the embedded proteinsmay form aggregates or show onlyweakmutual attraction, depending on the
chemical structure of the lipids and proteins [43]. As illustrated infigure 1 the proteinsmay form cage-like
environments and bottlenecks for the lipidmolecules, effecting pronounced anomalous diffusion [43]. The
effectivemobility in effectively two-dimensional, crowded colloidal systems or emulsions is also of current
interest, including the existence of jamming effects [47].

Particle diffusion in crowded and structured three-dimensional environments has been in the focus of a
number of simulations [48–55] and theoretical studies [9, 49, 56, 57]. Inmembrane systems similar structural
elements are effected by the cellular cytoskeleton supporting themembrane [37, 39]. The observed anomalous
diffusion in such systems is addressed by various generalised stochastic processes [58–60]. Specifically in an
environment of densely packed, freelymoving crowders the tracer diffusion follows Brownianmotion at
sufficiently long times [53], whereas for crowders confined by a potential and for static crowders the tracer
diffusion features an extended—albeit ultimately transient—subdiffusive regime [53, 61].

The current interest in crowding comes from experimental evidence of polydispersemixtures of crowding
proteins and spatial variation of the apparent diffusion coefficient in the bacterial [62–64] and eukaryotic
[65, 66] cytoplasm, see also [8, 53, 55].Moreover, the distribution of crowders in the cell was shown to be rather
heterogeneous, effecting a fastermobility of small tracer proteins near the cell nucleus of surface adhered cells
[65].We alsomention the spatially dependent protein diffusion in the cytoplasm and nucleus [66], the
dynamical heterogeneity of the cell cytoplasm [3], and a position dependent viscosity in bacteria [67]. These
properties of the cell cytoplasm impose severe restrictions on the rates of biochemical reactions [68, 69]
including polymer dynamics [70–73] and particle diffusion [53, 55, 61]. As discussed below our two-
dimensionalmodel should remain valid for the diffusion of large tracers in surface adhered, superdensely
crowded cells.

In lipid bilayermembranes heterogeneities are also common. Thus cholesterol is known to lead to aggregate
[74] and supramolecular complex formation [75]. This controls the preference for differentmembrane phases
[76–78]. Demixing of lipid components and pattern formationmay occur [79]. The formation of such domains
by electrostatic lipid-proteins interactions was demonstrated by simulations recently [80].Moreover,
microdomains of up to 200 nm in size, so-called lipid rafts, are believed to function as organising centres for
molecular assembly [81].

Here we address two aspects of crowding: the finite size of the tracer and heterogeneous distributions of
crowders (HDC) in a two-dimensional circular domain. This domain could represent a region of a protein
crowded suspendedmodelmembrane or amembrane domainwithin a larger lipid bilayer. Similarly it could
represent afluidic device with amixture of smaller and larger colloidal particles or emulsion droplets. In the
space between the outer boundary and the centre—representing, for instance, a large receptor domain—we
place either homogeneous or heterogeneous distributions ofmonodisperse crowders, as shown infigure 2.We
then simulate themotion of afinite sized tracer through a static crowder configuration. Given the separation of
mobilities between lipids and proteins inmembranes or between small colloids and large, squeezed droplets in
fluidic setups, the assumption of a static crowding background appears a good approximation. The implications

Figure 1.Protein crowded lipid bilayermembrane, illustration from coarse grained simulations. The lipids (small bluemolecules)
move in an array of proteins (large yellow objects) creating local confinement and bottlenecks for the passage of the lipids. This causes
pronounced anomalous diffusion of lipids and proteins [43]. Figure courtesyMatti Javanainen.
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of polydispersemixtures of crowders is beyond the scope of this paper, see the discussion section.We investigate
the two biologically relevant scenarios of in–out (from centre to domain boundary) versus out–in (fromdomain
boundary to centre) tracer diffusion, finding fundamental differences. From extensive simulationswe determine
the particle distribution for different crowding environments and study the particle dynamics in terms of the
ensemble and time averagedMSDs.We further analyse the non-Gaussianity of trajectories, the vanHove
correlation function, as well as the behaviour of the survival probability of the tracer.

The paper is organised as follows. In the next sectionwe set up themodel, discuss the simulation procedure
and the data analysis. In sections 3 and 4we describe themain results for the homogeneous and heterogeneous
cases, respectively, and compare them to theoreticalmodels. Further analyses of both cases in terms of the non-

Figure 2.Diffusion profiles for homogeneous (panels (A) and (B)) and heterogeneous ((C) and (D))monodisperse crowders. In panel
(A) the fraction of crowders increases from left to right:f=0.05, 0.2, 0.3, and their size isfixed toRc=2. In panel (B) the size of the
crowders grows from left to right:Rc=1, 2, 5, while the crowding fraction isfixed atf=0.2. ForHDC in panels (C) and (D), the
crowding fraction r( )f exhibits the linear growth (2). The centre represented by the excluded disk shown in orange represents a
receptor domain or similar structure. The diffusion is in–out (i.e., from the centre to the domain boundary) in panel (C) and out–in
(from the boundary to the centre) in panel (D). The initial tracer position is shown by the small blue circle. The crowder radius in
panels (C) and (D) grows from left to right:Rc=1, 2, 5. The regions of the domain visited by the tracer up to the diffusion time
T=104 are depicted in blue. For a single tracer diffusing in the domainwithHDC, significant asymmetries in the particle spreading
and sampling of the spacemay arise at higher crowding fractions.
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Gaussianity parameter and the vanHove function are shown in section 5, while the survival probability is
discussed in section 6. In section 7we draw our conclusions and discuss some applications of our results.

2.Model, simulations scheme, and data analysis

Weconsider amodel domain in the formof a planar circular annulus between the centre, an excluded region of
radius a, and the domain boundary at radiusR, see figure 2. The space between the boundary and the centre is
filledwith staticmonodisperse crowders of radiusRc.We consider two cases: a homogeneous distribution of
crowders with a prescribed crowding (area) fractionf, andHDCwith a linear radial gradient

r a
R a

R a
r a 2( ) ( ) ( ) ( ) ( ) ( )f f

f f
= +

-
-

-

for a r R< < . Aswe show below, equation (2) leads to a transient subdiffusion of the tracermotion from the
centre to the boundary, emerging due to an increasing density of crowders near the boundary as evidenced by
figures 2(C), (D). The present approach is complementary to our recent studies of heterogeneous diffusion
processes [82–87]with a deterministic space dependent diffusivity. Similar to thefindings in those studies the
explicit HDC considered here gives rise to a radially varying particle diffusivity in the domain, to non-Brownian
diffusion, and non-Gaussian statistics of particle displacements, see below. Themethodology reported here
further develops themodel of tracer diffusion in lattices with periodically distributed crowders examined by us
recently [61].

In the simulations the crowders are placed at randompositions in the domainwithout overlap. The initial
tracer position is well in between neighbouring crowders. The highest crowding fraction is around 30%.When
computing themean time averagedMSDwe typically average overM=102 random configurations of
crowders. This disorder average is taken in addition to the average over individual trajectories in a given,
quenched crowder configuration.

The tracer particle has afixed unit radiusσ/2.We set the outer and inner domain radii toR=100 and
a=30, respectively. The radii aremeasured in terms of the length scaleσ=6 nm, see below. Formost cases of
HDCwe set a 0.01( )f = and R 0.3( )f » . The latter value is considerably smaller than the percolation
threshold in two dimensions. However, due to the finite size of the diffusing particles, the effective crowding
fraction efff is higher than for a point-like tracer. For instance, forRc=5 and a unit tracer radius one gets for a
domainwithR=100 and a=30 that 0.43efff » ; this is alreadymuch closer to the percolation threshold
of 0.59f » .

TheWeeks–Chandler–Andersen repulsive potential given by the 6–12 Lennard–Jones (LJ) potential E rLJ ( )
with the standard cutoff distance rcut is used to parameterise the repulsion between the tracer and crowders

E r
r r

4
1

4
3LJ

12 6

( ) ( )⎜ ⎟ ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥ s s

= - +

for r r 2cut
1 6s< = , and E r 0LJ ( ) = otherwise [88–90].We do not consider here attractive tracer-particle

interactions, see the discussion section.We evaluate the LJ based interactions in our two-dimensional systemby
calculating the centre-to-centre distance between interacting discs.We represent the LJ potential in polar
coordinates, independent of the space dimension. The potential of the form (3) is often used to simulate the
properties of two-dimensional fluids [91–93]—see also [94] for higher dimensions.When implementing the
repulsive part of the LJ potential in our simulations, we calculate the force in one dimension and then update the
coordinates x and y independently. The details of the systembehaviour, however, can evidently depend on the
procedure of truncation of the LJ potential, see, for instance, [89, 90] for an example of two and three-
dimensional LJfluids. Some of these differences for systems of repulsive discs can, however, be reconciled in
terms of an effective particle diameter [92].

We simulate the dynamics of themid point tr( ) of the tracer via the Langevin equation
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wherem is themass of the tracer particle, ξ is the friction coefficient experienced by the tracer particle, tv( ) is its
velocity, and RJ is the static position of the Jth crowder. Finally tF( ) represents aGaussian δ-correlated noise
with zeromean and covariance

t t k t tF F 2 . 5j k j k B,( ) · ( ) ( ) ( )Td x dá ¢ ñ = - ¢
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The inertial term in equation (4) gives rise to a short time ballistic dynamics, as shown below (see [61] formore
details). In the simulationswe set k m1, 1BT = = = , and ξ=1 corresponding tomoderate damping [95–
97]; the solution viscosity in these units is 1. The reader is also referred to the studies [55, 98] regarding the scale
dependent viscosity known to exist in the cell cytoplasm. The diffusivity of a tracer in an uncrowded
environment is

D k 1. 6B0 ( )T x= =

The unit time step of simulations corresponds to the physical time m kB( )Tt s= . For the chosen radius of
σ, given amass characteristic for themolecular weight of biomolecular crowders of a similar size of about 68 kDa
[55, 99, 100], the physical time scale corresponds to 1t » nsec.We employ theVerlet velocity algorithmwith
the time step δ t=0.01 to integrate the stochastic equation (4).

To characterise the diffusion behaviourwe evaluate the time averagedMSD

T
t t tr r

1
d 7

T
2

0

2( ) [ ( ) ( )] ( )òd D =
- D

+ D -
-D

for individual particle trajectories tr( ). HereT is the observation time andΔ is the lag time defining thewidth of
thewindow slid along the trajectory. This definition is standard in single particle tracking experiments
[1, 12, 60, 101]. GivenNmeasured trajectories the ensemble average is

N

1
. 8

i

N

i
2

1

2( ) ( ) ( )åd dD = D
=

For quenchedHDCwe also calculate the disorder average overM realisations of a crowding environment
(compare [102, 103]),

M

1
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j

M
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The ensemble averagedMSD is also computed as double average overN tracer trajectories for each crowders
distribution andM crowders distributions
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3.Homogeneous crowding: ensemble and time averagedMSDs

We start with the analysis of the tracer diffusion among staticHDC,figures 2(A), (B). Figure 3 shows the
ensemble averagedMSD tr2( )á ñand the localMSD scaling exponent

t
t

t

rd log

d log
, 11

2

( ) [ ( ) ]
[ ]

( )b =
á ñ

when the crowding fractionf and the crowder radiusRc are varied. For relatively large crowders the initial
standard ballistic growth of theMSD (underdamped particlemotion, see also [61]) crosses over to a quite
prolonged Brownian regimewith 1b » , figures 3(A), (C). For the smaller crowders, after about the same
physically expected relaxation time of t 1~ , a region of subdiffusion emerges, compare panels (B) and (D) in
figure 3 for the behaviour of theMSD and the scaling exponentwith panels (A) and (C).

The ballistic regime in the tracer displacement extends to about the same time scale

t m 1, 12ball ( ) x =

both for normal and subdiffusive tracer behaviour at later times, as we checked in the simulations (results not
shown). At even later times the tracermotion starts to be affected by confinement due to the outer reflecting
membrane boundary positioned at r=R, and theMSDbegins to saturate to a plateau, as expected.
Concurrently the exponent t( )b tends to zero. This drop is solely due to theHDC in ourmodel: for the tracer
diffusion in densemixtures of purely repulsive and uniformly smeared crowders, the diffusionwas shown to be
nearly Brownian [55].We also expect that the short time ballistic behaviour of theMSD and the peculiar features
of the repulsive tracer-crowder interaction potential do notmeasurably affect the long time scaling behaviour of
the tracerMSD.

The effect off on theMSDbehaviour is illustrated in panels (A) and (B) offigure 3 for large and small
crowders, respectively. For a tracer of unit size the larger crowders do not appear to create substantial
obstruction for the simulatedMMC fractions. Even at relatively largef values theMSDonlymarginally
diminishes with increasingf, see panel (A). In other words, small tracers alwaysmanage tomanoeuvre around
large void spaces remaining between large crowders (figure 2). In contrast, relatively small crowders at identical
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MMCfractions yield severe reductions of the diffusive tracermotion, figure 3(B). This observation is consistent
with the dramatic differences of the spatial space exploration patterns in panels (B) offigure 2. Themagnitude of
theMSDplateau attained for largerf values ismuch smaller than expected for an annulus without crowders,
comparewith equation (13) below. This fact is due to the intricate labyrinthine environment formed by small
crowders for diffusion of the same tracer. For small crowders the value ofβ is reduced significantly and atmuch
earlier times for largerf, see panels (C) and (D) offigure 3. These features obviously strongly depend on the
specific quenched environment, inwhich the particlemotion occurs, resulting in a high degree of
irreproducibility of the tracer diffusion for different realisations of the disorder. This is also quantified in panel
(F) offigure 3 and leads to substantially larger uncertainties in the scaling exponent t( )b computed from the
MSD curves. The strong effect of small crowders on theMSD and its scaling exponent at intermediate times and
theminor effect of the large crowders is ourfirstmain result.

We now turn to the analysis of the time averagedMSDobtained from averaging overM=102 tracer
trajectories for a single crowder configuration. As shown in panel (E) offigure 3 for large crowderswithRc=5
and smallMMC fractions f the spread of 2d is quite small. At later times—when the tracermotion starts to be

influenced by the outer boundary—the average 2 ( )dá D ñapproaches a plateauwhich has about twice the
amplitude of theMSDplateau, see panel (E) infigure 3.Note that due to the relatively small domain size used in
the simulations, themoderate trajectory lengths, and the presence of randomly distributed crowders this plateau
is not as distinct as, for instance, for the deterministic, confined heterogeneous diffusion processes, compare
figure 4 in [86] andfigure 8 in [87].

We recall that for the uncrowded case the long time (plateau) values of the ensemble and time averaged
MSDs are related to the inner and outer radii in two-dimensions as

Figure 3.MSD, local scaling exponent t( )b , and time averagedMSD 2dá ñ for tracer diffusion in homogeneously crowded domains.
The two columns are forRc=5 (left) andRc=1 (right). The data for differentf are shown by different symbols in the panels (A)–
(D). In panels (A) and (B) the two dashed lines indicate the ballistic asymptote at short times and the linear Brownian growth at
intermediate times. In panels (E) and (F)weplotN=100 time averagedMSD curves for a particular distribution of crowders. In
panel (E) the long time plateau (13) of theMSD is shown by the dotted line. Parameters: the radius of the domain isR=100 and the
centre radius is a=30. The fractionf is indicated in the panels.Where applicable, the number of different crowders configurations
used in the averaging for theMSD and the scaling exponent isM=100 (disorder averaging), the number of tracer trajectories in each
crowders configuration isN=100 so that M N 104´ = . To improve the presentation, a log sampling of the data points along the x
axis is employed for time and ensemble averaged quantities.
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The factor 1/2 stems from the very definition (7) of the time averagedMSD [60, 104, 105]. The asymptote (13) is
shown infigure 3(E). The attainment of a plateau value of both ensemble and time averagedMSDs on a bounded
domain is a typical feature of both ergodic processes such as Brownian and fractional Brownianmotion and even
someweakly non-ergodic processes. It is thus inherently different from the deviations from a plateau value in
confining potentials [60, 104].

In contrast, for small crowders at highMMC fraction off=0.3 the amplitude spread of the time averaged
MSD curves for a particular distribution of crowders is quite pronounced, figure 3(F). Themagnitude of 2d is
much smaller than that for larger crowders, compare themagnitude of 2d in panels (E) and (F) of figure 3. In
fact, time averagedMSD curves with very smallmagnitudes (below 1) resulted fromalmost immobilefinite size
tracers that were blocked by surrounding crowders.Moreover, the tracer only rarely reaches the outer boundary
butmostly saturates atmuch lower values due to confinement by the crowders in a sub-domain of ourmodel
domain. The time averagedMSD itself features amuchmore pronounced amplitude scatter for the same
numberN of traces used in the averaging, see figure 3(F). Because of the tracer localisation and thewide
amplitude spread of 2d , themean 2dá ñhas poor statistics and its relation to theMSDprescribed by (13) is
difficult to check. This behaviour of the time averagedMSD in homogeneous crowding environments is our
secondmain result.

Figure 4 compares the average overN different tracer trajectories starting at randompoints at the centre for a
single crowder distribution and the double averaging that includes the average overM random realisations of
crowders. The time averagedMSDs forN=100 andM=100 are shownby symbols, while those for the case
M=1 andN=104 are shown as solid lines. The two cases of homogeneously distributed crowders for large
(panel (A)) and small (panel (B)) crowders are presented.We observe that the differences between the two
averaging approaches are rather small: the single average over 104 trajectories and the double average over 102

trajectories and 102 crowder distributions yield very similar results.

4.Heterogeneous crowding: ensemble and time averagedMSDs

HowdoesHDCaffect the above results? An immediate effect consists in very different properties for the in–out
(from the centre to the boundary) and out–in (from the boundary to the centre) scenarios of the tracer diffusion.
The average local density of crowders in the simulation domain (see panels (C) and (D) offigure 2) is generated
according to equation (2)which naturally leads to a higher local diffusivity close to the centre.

For the in–out diffusion from the centre to the domain boundary the tracers become trapped in
progressively denser arrangements ofHDCAt the same f, these caging situations arise earlier in time for smaller
crowders as compared to larger crowders, compare the panels (C) infigure 2. Similar to the homogeneous case
theMSD starts ballistically, with themaximal time scale of ballisticmotion being independent of the crowder
radius and the extent of anomalous diffusion in the system at later times, equation (12). The tracermotion then
reveals a linear Brownian regime, and finally saturates due to the confinement in the annulus. Concurrently, the
scaling exponent t( )b decreases continuously andfinally vanishes when theMSDapproaches a plateau, see
panels (A) and (C) offigure 5. The spread of 2d is relatively small and their long time plateau is again about twice
of that of the ensemble averagedMSD for a particular crowder configuration, as expected from relation (13) and
seen in panels (E) offigures 3 and 5. At intermediate times a disparity between the ensemble and time averaged

Figure 4.Time averagedMSD curves for trajectory based averaging only (solid lines;M=1,N=104) and for double averaging over
tracer trajectories and realisations of the crowder distributions (symbols;M=102,N=102), computed for homogeneouslydis-
tributed crowders. These curves can be compared to the results in panels (E) and (F) offigure 3. The crowder radiusRc and the fraction

f are indicated in the plots. Note that individual 2d curves are not shown, only the averages 2dá ñand 2dá ñ
~

.
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MSD is also observedwhen compared to the homogeneous case, see figure 5(E). The scatter of 2d decreases
when longer trajectories are analysed (results not shown). This behaviour is expected and is realised for several
ergodic and nearly ergodic processes [60, 105]. Themagnitude of the amplitude scatter of 2d in panels (E) of
figures 3 and 5 is comparable to that of Brownianmotion [60, 106, 107] as the tracers explore a less crowded
space over time.

In the opposite case of out–in diffusion (panel (D) offigure 2)we observe that for relatively highf of small
crowders afinite size tracer often cannot even leave the vicinity of the boundary, giving rise to prolonged

trapping events in this confined area. This leads to a large proportion of low amplitude, nearly constant 2d
curves, corresponding to the red curves infigure 5(F). Themean time averaged 2 ( )dá D ñ is inmany cases
dominated by several successful fast translocation events of tracers from the domain boundary to the centre. In
the long time limit the asymptote (13) is thus not valid in this situation. The tracer localisation and the
dominance of one or few extreme tracer trajectories in themean 2 ( )dá D ñ is also a rather common feature of
stochastic processes in the presence of well pronounced traps aswell as in ageing stochastic processes [60, 108].
The distinctly different behaviour between out–in and in–out diffusion in the systemofHDC is the thirdmain
results of this study.

Since the crowding fraction in equation (2) grows from the centre towards the boundary, the in–out
diffusion forHDC is expected to be subdiffusive [84]. In this scenario the tracers are progressively trapped closer
to the domain periphery. Here, however, we observe the formation of a radial percolation in the circular
domain: the tracers are not allowed to penetrate beyond some critical radius that features a particular critical
density of crowders, an effect that is crucially related to the finite size of both the crowders and the tracer particle.
Similar effects of local confinement are naturally observed for single particle trajectories of tracer diffusion in
randompercolation systems [103]. The initial period of the tracer diffusion that occurs in the regionwith low
crowder density is naturally reproducible and leads to a small spread of 2d curves, as shown infigure 5(E).

Figure 5.MSD, exponent t( )b , and time averagedMSD for particles diffusing forHDCof the form (2). The two columns correspond
to the in–out and out–in tracer diffusion, that is, respectively, for the release of the tracer particle at the inner and outer radii of the
model domain. The data for different crowder radiiRc are shown by different symbols in panels (A)–(D). In panels (A) and (B) the
dashed lines indicate the ballistic asymptote at short times and the linear Brownian regime at intermediate times. In panels (E) and (F)
the long time plateau of theMSD for the uncrowded case given by the asymptote (13) is shown by the dashed line. Parameters:
R a T M100, 30, 10 ,5= = = = 100, andN=100.
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In contrast, for the out–in diffusion the tracer starts in the region of the highest concentration of crowders
and diffuses into regions containing less and less crowders. The associated initial tracer localisation events give
rise to stalling 2d curves with a very large spread, see figure 5(F). Early trapping in this scenario leads to the
emergence of a longer plateau region in the corresponding time averagedMSD curve. Themean 2dá ñcomputed
over an ensemble ofN trajectories is rather imprecise because of the dominance of few extreme events.

We checked that for homogeneously distributed crowders the radial tracer diffusivity is approximately
constant (panels (A) and (B) offigure 6), as it should be. As the size of the crowders decreases at a constantf, the
effective viscosity of the solution increases, as follows from the decreasing normalised diffusion coefficient
plotted infigure 6(B). Also, the solution becomes effectivelymore viscouswith increasingMMC fractionf, see
panel (A) offigure 6. In turn, forHDCgiven by equation (2) the radial tracer diffusivity is a decreasing and nearly
linear function of the distance from the centre (panel (B) offigure 6),

D r D
r a

R a
1 0.78 const. 140( ) ( )⎜ ⎟⎛

⎝
⎞
⎠» -

-
-

+

The slope 0.78 is nearly independent on the crowder radiusRc. This linear dependence of the instantaneous
diffusivity decrease in the domain is a consequence of the linear increase of the crowders density r( )r ,
equation (2). This linear dependence of D r( ) in equation (14) is our fourthmain result.

5.Non-Gaussianity parameter and vanHove correlation function

Following reference [61]we nowproceed to evaluate the experimentally relevant non-Gaussianity parameter for
the tracer diffusion in our crowded environment. Similar to the ergodicity breaking parameter EB [60, 109] it
contains the fourth ordermoment of the tracer time averagedMSD.Namely, in two-dimensionswe have
[9, 110]

G
2

1. 15
4

2 2
( ) ( )

( )
( )d

d
D =

á D ñ

á D ñ
-

Wefind that for in–out diffusion the non-Gaussianity parameter assumesmoderate values for shorter lag times
Δwhile it becomes close to zero for longer lag times, figure 7(A). This is a typical long time behaviour of ergodic
tracer diffusion, comparefigure 3(a) in [110]. Indeed, as we show infigure 5(E), in the long time limit the
ensemble and time averagedMSDs differ simply by the abovementioned factor of 2 forHDC In contrast for
out–in diffusion the non-Gaussianity parameter attains substantially larger values. This feature is likely due to
the highly non-reproducible trajectories of the tracermotion and prolonged localisation events near the domain
boundary at high crowder concentration.

The trapping as well as the non-Gaussianity of the tracer diffusion can also be characterised by the vanHove
correlation function G x t,s ( )D D describing the probability that a particlemoves a distanceΔx during timeΔt
[111, 112],

G x t
N

x t x x,
1

0 , 16s
i

N

i i
1

( ) ( ( ) ( ) ) ( )ådD D = D - - D
=

Figure 6.Effective radial diffusivity of tracers for ((A) and (B)) homogeneous and (C)heterogeneous r( )f crowding.Other parameters
are the same as infigures 3 and 5, respectively, andRc andf values are as indicated. The dashed line in panel (C) represents the
asymptote (14)without the last constant term. The local tracer particle diffusivity values presented in panel (C) are identical for in–out
and out–in diffusion.
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whereN is the number of tracers used for averaging. For a systemof hard spheres this function simply
corresponds to theGaussian propagator [113] governed by the diffusion equation.

Figure 8 shows the behaviour of G x t,s ( )D D for tracer diffusion inHDCWeobserve that for relatively large
crowders the probability of trapping events of the tracer particle is quite low and the distribution of tracer
displacements remains close toGaussian for allf studied, as it should (see panel (B) infigure 8). In contrast, for
small crowders the non-Gaussianity of the vanHove function becomes quite pronounced, in particular for
largerf,figure 8(A). A faster decay of the tracer displacements at highf and for small crowders is a consequence
of tracer caging by crowders and anomalously slow diffusion. The almost exponential distributions for high
crowding fraction in panel (A) offigure 8 comparewell with the experimentallymeasured step size distributions
for polymer diffusion on nano-patterned surfaces presented infigure 4 of [114] aswell as for liposome diffusion
in nematic solutions of actin filaments in figure 3(C) of [115]. HDCs for tracer diffusion cause a separation of

Figure 7.Non-Gaussianity parameter G ( )D (15) for in–out and out–in tracer diffusion. Parameters are the same as infigure 5, and the
results are averaged overN=104 tracer trajectories for a single configuration of crowders (M=1).

Figure 8.VanHove correlation function for homogeneous crowder distributions, at severalf values. Other parameters are the same
as infigure 3. The solid line shows the approximately Gaussian function obtained fromour simulations for a tracer restricted to an
annulus without crowders. Panels (A) and (B) are for crowder radiiRc=5 andRc=1, respectively, computed forΔ t=100
corresponding toΔ t/δ t=104 simulation steps.

Figure 9.VanHove correlation function for (A) in–out and (B) out–in diffusion plotted for several crowder radiiRc inHDCThe solid
line shows the simulated distribution of a tracer restricted to an annuluswithout crowders: it almost superimposes with the results for
the largest crowders atRc=10.Other parameters are the same as infigure 5.
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particles into slow and fast populations (compare [83]), reflected in a cusp of the particle distribution near the
origin and longer thanGaussian tails for large tracer displacements.

ForHDC the behaviour of the vanHove function is illustrated infigure 9.We observe that for in–out
diffusion the distribution remains approximately Gaussian for all crowder radiiRc in our simulations. This
corresponds to the rather small non-Gaussianity parameter and quite limited spread of 2d curves. In contrast,
for out–in diffusion among small crowders G x t,s ( )D D becomes progressively non-Gaussian. It features a
pronounced cusp nearΔ x=0 describing a prevalence of small displacements characteristic for subdiffusion in
rather confined conditions. The detailed behaviour of the non-Gaussianity parameter and the vanHove
correlation function represents thefifthmain result of the present study.

6. Survival probability

First passage time statistics are important to describe cellular processes, for instance, to quantify the diffusion
limit of reactions triggered by incoming, diffusingmolecules [116–118]. Similarly, the anomalously diffusive
motion ofmembrane channels is implicated in the function of centres responsible for the exchange of larger
particles acrossmembranes [37]. In the presentmodel for amembrane domainwe focus on the survival
behaviour of particles arriving to the boundary from the centre surface (in–out case) or arriving to the centre
surface from the domain boundary (out–in case). To examine this behaviourwe consider the survival
probability S t( ) that a tracer started either at the centre or at the boundary, and does not attain a distance
a r( )+ away from the centre up to time t. This standard definition of the survival probability is directly related
to the probability density of thefirst arrival time t( )Ã of the tracer to that distance [116–118].

Figure 10 shows S t( ) for homogeneous and heterogeneousMMC. For both homogeneous case and in–out
diffusion forHDCwe observe at intermediate times

S t t . 171 2( ) ( )-

In turn, for out–in diffusion inHDC S t( ) has only a veryweak dependence on the diffusion time t. As the
distance a r( )+ increases the survival probability starts to follow the scaling behaviour at later times, figure 10.
Similar scaling relationswere obtained for subdiffusive heterogenous diffusion processes with a diffusivity

Figure 10. Survival probability S t( ) for (A)homogeneous crowding (tracers are released near the centre), and forHDC (2) for the
cases of (B) in–out and (C) out–in diffusion. The asymptote S t t 1 2( ) ~ - from equation (17) is shown in panels (A) and (B). Different
colours indicate S t( ) for various distances r a( )+ from the centre withinwhich the tracers are counted. Neither the inner boundary
at r=anor the outer boundary at varying radius a r( )+ is absorbing in the simulations. The parameters for panels (A)–(C) are the
same as in figures 3 and 5, respectively, and the conditions of themost effective crowding are chosen, with a crowder radiusRc=1.
The averaging is performed overN=104 tracer trajectories.

Figure 11.The same as infigure 10 but computed for the effective diffusivity D r( ) fromfigure 6(C). The asymptote S t t 1 2( ) ~ - is
shown in panels (A) and (B).
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D r D A A r0
2( ) ( )= + for in–out diffusion of particles [84].We also simulated the tracer diffusion in the

annuluswithout crowders butwith the effective local radial diffusivity D r( ) presented infigure 6(C). In these
simulations, the same scaling law (17) for S t( )was obtained, compare figures 10 and 11.

Figure 10 shows that the survival probability appears to saturate tofinite values, instead of decaying to zero.
The non-zero limiting value of S t( ) is related to the disorder averaging and should be equal to the fraction of
HDC inwhich the circle of radius a r+ is not accessible for a finite size tracer. In fact, for such configurations
the survival probability is 1, and it is thenweighted by the fraction of these configurations. The behaviour of S t( )
is the sixthmain result of this study.

The probability density t( )Ã of arrival times of the tracer particle at the inner and outer boundaries of a given
domain for the particle diffusion in homogeneous and heterogeneousmixtures of crowders is shown in
figure 12. It reveals a decay

t t 183 2( ) ( )Ã µ -

at intermediate time scales when the scaling for S t( ) is very clear; namely, at times t 102 ... 3~ . The observed
scaling of t( )Ã is thus consistent with the general relation t S t td d( ) ( )Ã = - known between the two quantities
[118]. A better statistic and larger domain sizemight, however, be needed in simulations to unambiguously
validate the precision of the scaling laws (17) and (18) and the regimes of their temporal validity.

7.Discussion and conclusions

The dynamics of the lateralmobility of individual lipidmolecules in a lipid bilayer aswell as ofmembrane
embedded proteins is of fundamental importance for the function of biologicalmembranes. For instance, the
lipid demixing to formdomains and patterns or protein complex formation are considered to be elementary
prerequisites formembrane associated processes. Here we studied a schematic two-dimensionalmodel system
for such processes: small particles (the lipids or small embeddedmolecules)with afinite size diffuse in a static
array of large particles (the crowding proteins or protein complexes) at different crowding densities and crowder
distributions.We observed several remarkable effects that are of interest from a physical point of view butwill
also impact the study of (quasi) two-dimensional crowded systems such as lipid bilayermembranes orfluidic
systems such as confined emulsions or colloids.

The spatial heterogeneity of physical systems is oftenmodelled through space-dependent diffusivities D x( ).
These approaches include deterministic prescribed shapes of D x( ) [82–87] corresponding to the systematic
variation of the local particle diffusivity observed in living cells [65, 67]. Concurrently D x( ) can be taken as a
spatially and temporally randomquantity [119, 120]. Both kinds of processesmay lead to non-stationary
anomalous diffusion exhibiting ageing even at long observation times [60]. Our extensive Langevin dynamics
simulations of tracer diffusion in afinite heterogeneous environment reveal transient anomalous diffusionwith
a number of features that are similar to these idealised stochasticmodels.

For point-like diffusers onewould expect that smaller crowders impede the diffusion less, as the tracer can
always pass through even small gaps between the crowders. In turn, the point tracerwould have to navigate
around larger crowders and thus be affectedmore severely. Aswe showed here the opposite effect occurs for a
tracer of afinite size, comparable to the size of the crowders. In this case small crowders significantly hamper the
spreading of the tracers as compared to larger crowders at the same crowding fractionf.Moreover, the van
Hove correlation function acquires an exponential shape at higherf and small crowders, whereas this function
is nearlyGaussian and quite insensitive to the crowding fraction for large crowders.While onewould expect this
effect to be somewhatmitigated by afinite yet smallmobility of the crowders recent simulations studies of

Figure 12.Probability density of arrival times t( )Ã for homogeneous crowding (panel (A)) andHDC for in–out (B) and out–in (C)
diffusion. The arrival of particles was evaluated at the radius r a 30( )= + for in–out diffusion and r=R−30 for out–in diffusion,
to reach a satisfactory statistic. Parameters are the same as in figure 10, and the number of events in each panel is N 5 104= ´ .
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protein crowded lipid bilayers indicates that themotion is very similar to that of particles diffusing in static
obstacle arrays [43].

Concurrent to this effect we observe for larger, homogeneously distributed crowders an extended Brownian
regime of the ensemble averagedMSD,whosemagnitude is almost independent of the crowding fractionwithin
the investigated range. The time averagedMSD in this case is also highly reproducible. For smaller crowders,
however, anomalous diffusion effects in the ensemble averagedMSDoccur and becomemore severe asf
increases. Additionally, individual time averagedMSD curves demonstrate the early immobilisation of the tracer
particles in the quenched landscape, corresponding to the crossing of a local percolation threshold for the tracer
motion.

Similar effects were observed forHDCs. Due to the deterministic gradient of the crowder distribution, we
distinguished the two scenarios of in–out and out–in diffusion. The in–out case resembles inmany aspects the
homogeneous case: the spread of the time averagedMSD is small, the vanHove correlation function is close to
Gaussian andweakly depends on the crowder size, and the survival probability exhibits the characteristic square
root decay at intermediate times. In contrast, the out–in case ismarked by a highly non-Gaussian diffusion of the
tracer: high values of the non-Gaussianity parameter and a pronounced cusp in the vanHove correlation
function nearΔ x=0 reveal a prevalence of small displacements. This is characteristic for subdiffusive
processes.Moreover, the survival probability exhibits a very slow decay and tends to saturate at large values
reflecting the dominance of crowder configurations that block the tracer near the release point at the domain
boundary. As a consequence, the computed averages over tracer trajectories are dominated by few successful
translocation events.

Could some of the observations of our two-dimensional system also be relevant for the diffusion of particles
in the cytoplasmof biological cells?Many eukaryotic cells are often adhered onto surfaces and reveal a quasi two-
dimensional, fried egg shape [21, 31, 65, 84]. The vertical cell thicknessmay be as small as severalmicrons or less,
as compared to tens ofmicrons in the lateral dimension of non-adhered cells. This enables the tracking of tagged
diffusing particles for longer distances, for instance, by conventional fluorescencemicroscopywhen the particles
need to stay close to the focal plane [121–123]. Still, we emphasise that for relatively small tracer particles (such as
small cellular proteins), the cell thickness even in its flat regions ismuch larger than the average inter-crowder
separations.However, larger diffusing particlesmay be impeded by crowders such as vesicles, often found in
great abundance in certain cell types such as insulin producing cells [20] or amoeba [35]. In these supercrowded
[35] cases our results couldwell be applicable albeit with a renormalised tracer particle size to accommodate for
some possible overlap due to the third dimension.

In the present studywe neglected hydrodynamic interactions between the tracer and the crowders. In three-
dimensional systems thismay affect the long time diffusion [2, 50, 124–126]. The slow, 1/r decay of this
hydrodynamic coupling implies that a diffusing particle is impacted by crowders from afinite distance that helps
avoiding to collide with the crowders. In the two-dimensionalmembrane systemmotivating our study the lipid
molecules themselves represent afluid background inwhich the crowding proteins are embedded.Water
molecules are typically expelled from the bilayer and onlywet its surfaces.

It will be of interest to extend our results to three-dimensional crowded situations, in particular, to the
superdense [1] cytoplasm of biological cells. There, the crowding induced changes in the diffusion of signalling
molecules is expected to impact gene regulation andmetabolism [127] and also alter active transport properties
[21, 33, 34, 128]. Other extensions of the currentmodel include polydisperse static and dynamic crowders [129–
131], cylindrical domainsmimicking a typical bacterial shape [55, 132], specific and non-specific tracer-crowder
interactions [55, 61], three-dimensional computer simulations, a variable tracer size, as well as deformable and
non-spherical crowding particles [133, 134].
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