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Abstract

A topic of intense current investigation pursues the question of how the highly crowded environment
of biological cells affects the dynamic properties of passively diffusing particles. Motivated by recent
experiments we report results of extensive simulations of the motion of a finite sized tracer particle in a
heterogeneously crowded environment made up of quenched distributions of monodisperse crowders
of varying sizes in finite circular two-dimensional domains. For given spatial distributions of
monodisperse crowders we demonstrate how anomalous diffusion with strongly non-Gaussian
features arises in this model system. We investigate both biologically relevant situations of particles
released either at the surface of an inner domain or at the outer boundary, exhibiting distinctly
different features of the observed anomalous diffusion for heterogeneous distributions of crowders.
Specifically we reveal an asymmetric spreading of tracers even at moderate crowding. In addition to
the mean squared displacement (MSD) and local diffusion exponent we investigate the magnitude and
the amplitude scatter of the time averaged MSD of individual tracer trajectories, the non-Gaussianity
parameter, and the van Hove correlation function. We also quantify how the average tracer diffusivity
varies with the position in the domain with a heterogeneous radial distribution of crowders and
examine the behaviour of the survival probability and the dynamics of the tracer survival probability.
Inter alia, the systems we investigate are related to the passive transport of lipid molecules and proteins
in two-dimensional crowded membranes or the motion in colloidal solutions or emulsions in
effectively two-dimensional geometries, as well as inside supercrowded, surface adhered cells.

1. Introduction

The cytoplasmic fluid of living cells is a superdense medium [ 1-3], in which biomacromolecules occupy volume
fractions reaching well above 30% [4-8]. This macromolecular crowding (MMC) affects the diffusion of larger
passive molecules, endogenous as well as artificially introduced submicron tracer particles, and cellular
components [9]. One of the central observations is the existence of transient but often very extended anomalous
diffusion [10, 11] with the sublinear scaling

(r’(n) ~ Kst? )

of the mean squared displacement (MSD) of the diffusing particles with the anomalous diffusion exponent in the
subdiffusive range 0 < 3 < 1[9, 12]. Here K is the generalised diffusion coefficient with units cm?/sec” .
Subdiftfusion in the crowded cytoplasm of living cells was observed for fluorescent smaller proteins [13, 14],
labelled polymeric dextrane [15] and messenger RNA [1, 16], chromosomal loci and telomeres [16, 17], as well as
submicron endogenous granules [18—20] and viruses [21]. Subdiffusion was also reported for the motion of
tracer particles in artificially crowded environments [22—30]. We note that active transport processes in living
cells may lead to superdiffusion with 1 < 8 < 2[31-35].

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Protein crowded lipid bilayer membrane, illustration from coarse grained simulations. The lipids (small blue molecules)
move in an array of proteins (large yellow objects) creating local confinement and bottlenecks for the passage of the lipids. This causes
pronounced anomalous diffusion of lipids and proteins [43]. Figure courtesy Matti Javanainen.

Similarly to the volume crowding, cellular membranes are highly crowded interfaces with up to 25% of the
total area [36] occupied by various membrane proteins, ion channels, and pores [37]. By fluorescent correlation
spectroscopy and single particle tracking methods anomalous diffusion of the form (1) was measured for both
membrane embedded proteins [37-39] and lipid molecules [40]. These experimental findings are corroborated
by molecular dynamics as well as coarse grained simulations [41-46]. In model membranes as the one shown in
figure 1 the embedded proteins may form aggregates or show only weak mutual attraction, depending on the
chemical structure of the lipids and proteins [43]. As illustrated in figure 1 the proteins may form cage-like
environments and bottlenecks for the lipid molecules, effecting pronounced anomalous diffusion [43]. The
effective mobility in effectively two-dimensional, crowded colloidal systems or emulsions is also of current
interest, including the existence of jamming effects [47].

Particle diffusion in crowded and structured three-dimensional environments has been in the focus of a
number of simulations [48—55] and theoretical studies [9, 49, 56, 57]. In membrane systems similar structural
elements are effected by the cellular cytoskeleton supporting the membrane [37, 39]. The observed anomalous
diffusion in such systems is addressed by various generalised stochastic processes [58—60]. Specifically in an
environment of densely packed, freely moving crowders the tracer diffusion follows Brownian motion at
sufficiently long times [53], whereas for crowders confined by a potential and for static crowders the tracer
diffusion features an extended—albeit ultimately transient—subdiffusive regime [53, 61].

The current interest in crowding comes from experimental evidence of polydisperse mixtures of crowding
proteins and spatial variation of the apparent diffusion coefficient in the bacterial [62—-64] and eukaryotic
[65, 66] cytoplasm, see also [8, 53, 55]. Moreover, the distribution of crowders in the cell was shown to be rather
heterogeneous, effecting a faster mobility of small tracer proteins near the cell nucleus of surface adhered cells
[65]. We also mention the spatially dependent protein diffusion in the cytoplasm and nucleus [66], the
dynamical heterogeneity of the cell cytoplasm [3], and a position dependent viscosity in bacteria [67]. These
properties of the cell cytoplasm impose severe restrictions on the rates of biochemical reactions [68, 69]
including polymer dynamics [70-73] and particle diffusion [53, 55, 61]. As discussed below our two-
dimensional model should remain valid for the diffusion of large tracers in surface adhered, superdensely
crowded cells.

In lipid bilayer membranes heterogeneities are also common. Thus cholesterol is known to lead to aggregate
[74] and supramolecular complex formation [75]. This controls the preference for different membrane phases
[76-78]. Demixing of lipid components and pattern formation may occur [79]. The formation of such domains
by electrostatic lipid-proteins interactions was demonstrated by simulations recently [80]. Moreover,
microdomains of up to 200 nm in size, so-called lipid rafts, are believed to function as organising centres for
molecular assembly [81].

Here we address two aspects of crowding: the finite size of the tracer and heterogeneous distributions of
crowders (HDC) in a two-dimensional circular domain. This domain could represent a region of a protein
crowded suspended model membrane or a membrane domain within a larger lipid bilayer. Similarly it could
represent a fluidic device with a mixture of smaller and larger colloidal particles or emulsion droplets. In the
space between the outer boundary and the centre—representing, for instance, a large receptor domain—we
place either homogeneous or heterogeneous distributions of monodisperse crowders, as shown in figure 2. We
then simulate the motion of a finite sized tracer through a static crowder configuration. Given the separation of
mobilities between lipids and proteins in membranes or between small colloids and large, squeezed droplets in
fluidic setups, the assumption of a static crowding background appears a good approximation. The implications
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Figure 2. Diffusion profiles for homogeneous (panels (A) and (B)) and heterogeneous ((C) and (D)) monodisperse crowders. In panel
(A) the fraction of crowders increases from left to right: ¢ = 0.05, 0.2, 0.3, and their size is fixed to R, = 2. In panel (B) the size of the
crowders grows from left to right: R, = 1,2, 5, while the crowding fraction is fixed at ¢ = 0.2. For HDC in panels (C) and (D), the
crowding fraction ¢ () exhibits the linear growth (2). The centre represented by the excluded disk shown in orange represents a
receptor domain or similar structure. The diffusion is in—out (i.e., from the centre to the domain boundary) in panel (C) and out-in
(from the boundary to the centre) in panel (D). The initial tracer position is shown by the small blue circle. The crowder radius in
panels (C) and (D) grows from left to right: R. = 1,2, 5. The regions of the domain visited by the tracer up to the diffusion time

T = 10*are depicted in blue. For a single tracer diffusing in the domain with HDC, significant asymmetries in the particle spreading
and sampling of the space may arise at higher crowding fractions.

of polydisperse mixtures of crowders is beyond the scope of this paper, see the discussion section. We investigate
the two biologically relevant scenarios of in—out (from centre to domain boundary) versus out—in (from domain
boundary to centre) tracer diffusion, finding fundamental differences. From extensive simulations we determine
the particle distribution for different crowding environments and study the particle dynamics in terms of the
ensemble and time averaged MSDs. We further analyse the non-Gaussianity of trajectories, the van Hove
correlation function, as well as the behaviour of the survival probability of the tracer.

The paper is organised as follows. In the next section we set up the model, discuss the simulation procedure
and the data analysis. In sections 3 and 4 we describe the main results for the homogeneous and heterogeneous
cases, respectively, and compare them to theoretical models. Further analyses of both cases in terms of the non-
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Gaussianity parameter and the van Hove function are shown in section 5, while the survival probability is
discussed in section 6. In section 7 we draw our conclusions and discuss some applications of our results.

2. Model, simulations scheme, and data analysis

We consider a model domain in the form of a planar circular annulus between the centre, an excluded region of
radius g, and the domain boundary at radius R, see figure 2. The space between the boundary and the centre is
filled with static monodisperse crowders of radius R.. We consider two cases: a homogeneous distribution of
crowders with a prescribed crowding (area) fraction ¢, and HDC with a linear radial gradient

OR) = $(@
R—a

¢(r) = ¢(a) + a) 2

fora < r < R. Aswe show below, equation (2) leads to a transient subdiffusion of the tracer motion from the
centre to the boundary, emerging due to an increasing density of crowders near the boundary as evidenced by
figures 2(C), (D). The present approach is complementary to our recent studies of heterogeneous diffusion
processes [82—87] with a deterministic space dependent diffusivity. Similar to the findings in those studies the
explicit HDC considered here gives rise to a radially varying particle diffusivity in the domain, to non-Brownian
diffusion, and non-Gaussian statistics of particle displacements, see below. The methodology reported here
further develops the model of tracer diffusion in lattices with periodically distributed crowders examined by us
recently [61].

In the simulations the crowders are placed at random positions in the domain without overlap. The initial
tracer position is well in between neighbouring crowders. The highest crowding fraction is around 30%. When
computing the mean time averaged MSD we typically average over M = 10” random configurations of
crowders. This disorder average is taken in addition to the average over individual trajectories in a given,
quenched crowder configuration.

The tracer particle has a fixed unit radius 0/2. We set the outer and inner domain radii to R = 100 and
a = 30, respectively. The radii are measured in terms of the length scale ¢ = 6 nm, see below. For most cases of
HDCweset ¢ (a) = 0.01and ¢ (R) =~ 0.3. The latter value is considerably smaller than the percolation
threshold in two dimensions. However, due to the finite size of the diffusing particles, the effective crowding
fraction ¢, is higher than for a point-like tracer. For instance, for R. = 5and a unit tracer radius one gets for a
domain with R = 100and a = 30 that ¢, ~ 0.43; this is already much closer to the percolation threshold
of ¢ ~ 0.59.

The Weeks—Chandler—Andersen repulsive potential given by the 6—12 Lennard—Jones (L]) potential Ej; (r)
with the standard cutoff distance r is used to parameterise the repulsion between the tracer and crowders

12 6
Eyy(r) = 4{(%) - (%) + ﬂ 3)

for r < 1. = 2//°¢,and Ef;(r) = 0 otherwise [88—90]. We do not consider here attractive tracer-particle
interactions, see the discussion section. We evaluate the L] based interactions in our two-dimensional system by
calculating the centre-to-centre distance between interacting discs. We represent the L] potential in polar
coordinates, independent of the space dimension. The potential of the form (3) is often used to simulate the
properties of two-dimensional fluids [91-93]—see also [94] for higher dimensions. When implementing the
repulsive part of the L] potential in our simulations, we calculate the force in one dimension and then update the
coordinates x and y independently. The details of the system behaviour, however, can evidently depend on the
procedure of truncation of the L] potential, see, for instance, [89, 90] for an example of two and three-
dimensional L] fluids. Some of these differences for systems of repulsive discs can, however, be reconciled in
terms of an effective particle diameter [92].

We simulate the dynamics of the mid point r(#) of the tracer via the Langevin equation

O ;V[EU(Ir S %)) + EU('Y' o %))

dt?

+ EL]((R - %) - |r|)] — &v(t) + F@t), )

where m is the mass of the tracer particle, £ is the friction coefficient experienced by the tracer particle, v(t) isits
velocity, and R; is the static position of the Jth crowder. Finally F(#) represents a Gaussian 6-correlated noise
with zero mean and covariance

(Fi(t) - Be(t)) = 26,x&ks T 6t — 1). (5)
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The inertial term in equation (4) gives rise to a short time ballistic dynamics, as shown below (see [61] for more
details). In the simulations we set ¢ = kg7 = 1, m = 1,and £ = 1 corresponding to moderate damping [95—
97]; the solution viscosity in these units is 1. The reader is also referred to the studies [55, 98] regarding the scale
dependent viscosity known to exist in the cell cytoplasm. The diffusivity of a tracer in an uncrowded
environment is

Dy =k T /€ = 1. (6)

The unit time step of simulations corresponds to the physical time 7 = o/m/(kg.7") . For the chosen radius of
0, given a mass characteristic for the molecular weight of biomolecular crowders of a similar size of about 68 kDa
[55,99, 100], the physical time scale corresponds to 7 = 1 nsec. We employ the Verlet velocity algorithm with
the time step § t = 0.01 to integrate the stochastic equation (4).

To characterise the diffusion behaviour we evaluate the time averaged MSD

52 (A) = j;TiA [r(t + A) — r(t)Pdt 7)

T—-A

for individual particle trajectories r(¢). Here T'is the observation time and A is the lag time defining the width of
the window slid along the trajectory. This definition is standard in single particle tracking experiments
[1,12,60, 101]. Given N measured trajectories the ensemble average is

(2(A)) = 252 (A). (8)

For quenched HDC we also calculate the disorder average over M realisations of a crowding environment
(compare[102, 103]),

—— 1

(@) = 7, 2.2 Q) )

=

~
Il

The ensemble averaged MSD is also computed as double average over N tracer trajectories for each crowders
distribution and M crowders distributions

M N
Z oI — 6(0)];. (10)

i=1

(x2(t)) = {[r(t) — r(O)F) =

E‘H

—_

3. Homogeneous crowding: ensemble and time averaged MSDs

We start with the analysis of the tracer diffusion among static HDC, figures 2(A), (B). Figure 3 shows the
ensemble averaged MSD (r?(t)) and the local MSD scaling exponent

d[log(r?(1))]

A= d[logt]

(11)
when the crowding fraction ¢ and the crowder radius R, are varied. For relatively large crowders the initial
standard ballistic growth of the MSD (underdamped particle motion, see also [61]) crosses over to a quite
prolonged Brownian regime with 5 ~ 1, figures 3(A), (C). For the smaller crowders, after about the same
physically expected relaxation time of t ~ 1, aregion of subdiffusion emerges, compare panels (B) and (D) in
figure 3 for the behaviour of the MSD and the scaling exponent with panels (A) and (C).

The ballistic regime in the tracer displacement extends to about the same time scale

thall S, m/f =1, (12)

both for normal and subdiffusive tracer behaviour at later times, as we checked in the simulations (results not
shown). At even later times the tracer motion starts to be affected by confinement due to the outer reflecting
membrane boundary positioned at ¥ = R, and the MSD begins to saturate to a plateau, as expected.
Concurrently the exponent 3 (¢) tends to zero. This drop is solely due to the HDC in our model: for the tracer
diffusion in dense mixtures of purely repulsive and uniformly smeared crowders, the diffusion was shown to be
nearly Brownian [55]. We also expect that the short time ballistic behaviour of the MSD and the peculiar features
of the repulsive tracer-crowder interaction potential do not measurably affect the long time scaling behaviour of
the tracer MSD.

The effect of ¢ on the MSD behaviour is illustrated in panels (A) and (B) of figure 3 for large and small
crowders, respectively. For a tracer of unit size the larger crowders do not appear to create substantial
obstruction for the simulated MMC fractions. Even at relatively large ¢ values the MSD only marginally
diminishes with increasing ¢, see panel (A). In other words, small tracers always manage to manoeuvre around
large void spaces remaining between large crowders (figure 2). In contrast, relatively small crowders at identical
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Figure 3. MSD, local scaling exponent 3 (1), and time averaged MSD ( §2) for tracer diffusion in homogeneously crowded domains.
The two columns are for R. = 5 (left) and R, = 1 (right). The data for different ¢ are shown by different symbols in the panels (A)—
(D). In panels (A) and (B) the two dashed lines indicate the ballistic asymptote at short times and the linear Brownian growth at
intermediate times. In panels (E) and (F) we plot N = 100 time averaged MSD curves for a particular distribution of crowders. In
panel (E) the long time plateau (13) of the MSD is shown by the dotted line. Parameters: the radius of the domain is R = 100 and the
centreradiusisa = 30. The fraction ¢ is indicated in the panels. Where applicable, the number of different crowders configurations
used in the averaging for the MSD and the scaling exponentis M = 100 (disorder averaging), the number of tracer trajectories in each
crowders configurationis N = 100so that M x N = 10*. To improve the presentation, a log sampling of the data points along the x
axis is employed for time and ensemble averaged quantities.

MMC fractions yield severe reductions of the diffusive tracer motion, figure 3(B). This observation is consistent
with the dramatic differences of the spatial space exploration patterns in panels (B) of figure 2. The magnitude of
the MSD plateau attained for larger ¢ values is much smaller than expected for an annulus without crowders,
compare with equation (13) below. This fact is due to the intricate labyrinthine environment formed by small
crowders for diffusion of the same tracer. For small crowders the value of 3 is reduced significantly and at much
earlier times for larger ¢, see panels (C) and (D) of figure 3. These features obviously strongly depend on the
specific quenched environment, in which the particle motion occurs, resulting in a high degree of
irreproducibility of the tracer diffusion for different realisations of the disorder. This is also quantified in panel
(F) of figure 3 and leads to substantially larger uncertainties in the scaling exponent 3 (t) computed from the
MSD curves. The strong effect of small crowders on the MSD and its scaling exponent at intermediate times and
the minor effect of the large crowders is our first main result.

We now turn to the analysis of the time averaged MSD obtained from averaging over M = 10> tracer
trajectories for a single crowder configuration. As shown in panel (E) of figure 3 for large crowderswith R, = 5
and small MMC fractions ¢ the spread of 62 is quite small. At later times—when the tracer motion starts to be
influenced by the outer boundary—the average (62 (A)) approaches a plateau which has about twice the
amplitude of the MSD plateau, see panel (E) in figure 3. Note that due to the relatively small domain size used in
the simulations, the moderate trajectory lengths, and the presence of randomly distributed crowders this plateau
is not as distinct as, for instance, for the deterministic, confined heterogeneous diffusion processes, compare
figure 4 in [86] and figure 8 in [87].

We recall that for the uncrowded case the long time (plateau) values of the ensemble and time averaged
MSDs are related to the inner and outer radii in two-dimensions as
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(A) (B)

10*

Figure 4. Time averaged MSD curves for trajectory based averaging only (solid lines; M = 1, N = 10*) and for double averaging over
tracer trajectories and realisations of the crowder distributions (symbols; M = 10%, N = 10?), computed for homogeneously dis-
tributed crowders. These curves can be compared to the results in panels (E) and (F) of figure 3. The crowder radius R. and the fraction

—

¢ are indicated in the plots. Note that individual &2 curves are not shown, only the averages ( §2) and { §2).

1 _R+a
2 T2
The factor 1/2 stems from the very definition (7) of the time averaged MSD [60, 104, 105]. The asymptote (13) is
shown in figure 3(E). The attainment of a plateau value of both ensemble and time averaged MSDs on abounded
domain is a typical feature of both ergodic processes such as Brownian and fractional Brownian motion and even
some weakly non-ergodic processes. It is thus inherently different from the deviations from a plateau value in
confining potentials [60, 104].

In contrast, for small crowders at high MMC fraction of ¢ = 0.3 the amplitude spread of the time averaged
MSD curves for a particular distribution of crowders is quite pronounced, figure 3(F). The magnitude of 6is
much smaller than that for larger crowders, compare the magnitude of $%in panels (E) and (F) of figure 3. In
fact, time averaged MSD curves with very small magnitudes (below 1) resulted from almost immobile finite size
tracers that were blocked by surrounding crowders. Moreover, the tracer only rarely reaches the outer boundary
but mostly saturates at much lower values due to confinement by the crowders in a sub-domain of our model
domain. The time averaged MSD itself features a much more pronounced amplitude scatter for the same
number N of traces used in the averaging, see figure 3(F). Because of the tracer localisation and the wide
amplitude spread of 62, the mean ( 62) has poor statistics and its relation to the MSD prescribed by (13) is
difficult to check. This behaviour of the time averaged MSD in homogeneous crowding environments is our

(13)

second main result.

Figure 4 compares the average over N different tracer trajectories starting at random points at the centre fora
single crowder distribution and the double averaging that includes the average over M random realisations of
crowders. The time averaged MSDs for N = 100 and M = 100 are shown by symbols, while those for the case
M = land N = 10*are shown as solid lines. The two cases of homogeneously distributed crowders for large
(panel (A)) and small (panel (B)) crowders are presented. We observe that the differences between the two
averaging approaches are rather small: the single average over 10* trajectories and the double average over 10
trajectories and 10* crowder distributions yield very similar results.

4. Heterogeneous crowding: ensemble and time averaged MSDs

How does HDC affect the above results? An immediate effect consists in very different properties for the in—out
(from the centre to the boundary) and out—in (from the boundary to the centre) scenarios of the tracer diffusion.
The average local density of crowders in the simulation domain (see panels (C) and (D) of figure 2) is generated
according to equation (2) which naturally leads to a higher local diffusivity close to the centre.

For the in—out diffusion from the centre to the domain boundary the tracers become trapped in
progressively denser arrangements of HDC At the same ¢, these caging situations arise earlier in time for smaller
crowders as compared to larger crowders, compare the panels (C) in figure 2. Similar to the homogeneous case
the MSD starts ballistically, with the maximal time scale of ballistic motion being independent of the crowder
radius and the extent of anomalous diffusion in the system at later times, equation (12). The tracer motion then
reveals a linear Brownian regime, and finally saturates due to the confinement in the annulus. Concurrently, the
scaling exponent 3 (¢) decreases continuously and finally vanishes when the MSD approaches a plateau, see
panels (A) and (C) of figure 5. The spread of 62 is relatively small and their long time plateau is again about twice
of that of the ensemble averaged MSD for a particular crowder configuration, as expected from relation (13) and
seen in panels (E) of figures 3 and 5. At intermediate times a disparity between the ensemble and time averaged
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Figure 5. MSD, exponent 3 (t), and time averaged MSD for particles diffusing for HDC of the form (2). The two columns correspond
to the in—out and out—in tracer diffusion, that is, respectively, for the release of the tracer particle at the inner and outer radii of the
model domain. The data for different crowder radii R. are shown by different symbols in panels (A)—(D). In panels (A) and (B) the
dashed lines indicate the ballistic asymptote at short times and the linear Brownian regime at intermediate times. In panels (E) and (F)
the long time plateau of the MSD for the uncrowded case given by the asymptote (13) is shown by the dashed line. Parameters:

R =100, a = 30, T = 10°, M=100,and N = 100.

MSD is also observed when compared to the homogeneous case, see figure 5(E). The scatter of 2 decreases
when longer trajectories are analysed (results not shown). This behaviour is expected and is realised for several
ergodic and nearly ergodic processes [60, 105]. The magnitude of the amplitude scatter of % in panels (E) of
figures 3 and 5 is comparable to that of Brownian motion [60, 106, 107] as the tracers explore a less crowded
space over time.

In the opposite case of out—in diffusion (panel (D) of figure 2) we observe that for relatively high ¢ of small
crowders a finite size tracer often cannot even leave the vicinity of the boundary, giving rise to prolonged
trapping events in this confined area. This leads to a large proportion of low amplitude, nearly constant &2
curves, corresponding to the red curves in figure 5(F). The mean time averaged (62 (A)) is in many cases
dominated by several successful fast translocation events of tracers from the domain boundary to the centre. In
the long time limit the asymptote (13) is thus not valid in this situation. The tracer localisation and the
dominance of one or few extreme tracer trajectories in the mean (62 (A)) is also a rather common feature of
stochastic processes in the presence of well pronounced traps as well as in ageing stochastic processes [60, 108].
The distinctly different behaviour between out—in and in—out diffusion in the system of HDC is the third main
results of this study.

Since the crowding fraction in equation (2) grows from the centre towards the boundary, the in-out
diffusion for HDC is expected to be subdiffusive [84]. In this scenario the tracers are progressively trapped closer
to the domain periphery. Here, however, we observe the formation of a radial percolation in the circular
domain: the tracers are not allowed to penetrate beyond some critical radius that features a particular critical
density of crowders, an effect that is crucially related to the finite size of both the crowders and the tracer particle.
Similar effects of local confinement are naturally observed for single particle trajectories of tracer diffusion in
random percolation systems [103]. The initial period of the tracer diffusion that occurs in the region with low
crowder density is naturally reproducible and leads to a small spread of 62 curves, as shown in figure 5(E).
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Figure 6. Effective radial diffusivity of tracers for ((A) and (B)) homogeneous and (C) heterogeneous ¢ (r) crowding. Other parameters
are the same as in figures 3 and 5, respectively, and R. and ¢ values are as indicated. The dashed line in panel (C) represents the
asymptote (14) without the last constant term. The local tracer particle diffusivity values presented in panel (C) are identical for in—out
and out—in diffusion.

In contrast, for the out—in diffusion the tracer starts in the region of the highest concentration of crowders
and diffuses into regions containing less and less crowders. The associated initial tracer localisation events give
rise to stalling 62 curves with a very large spread, see figure 5(F). Early trapping in this scenario leads to the
emergence of alonger plateau region in the corresponding time averaged MSD curve. The mean { §2) computed
over an ensemble of N trajectories is rather imprecise because of the dominance of few extreme events.

We checked that for homogeneously distributed crowders the radial tracer diffusivity is approximately
constant (panels (A) and (B) of figure 6), as it should be. As the size of the crowders decreases at a constant ¢, the
effective viscosity of the solution increases, as follows from the decreasing normalised diffusion coefficient
plotted in figure 6(B). Also, the solution becomes effectively more viscous with increasing MMC fraction ¢, see
panel (A) of figure 6. In turn, for HDC given by equation (2) the radial tracer diffusivity is a decreasing and nearly
linear function of the distance from the centre (panel (B) of figure 6),

r—a

D(r) = Do(l — 0.78 ) + const. (14)

R—a
The slope 0.78 is nearly independent on the crowder radius R.. This linear dependence of the instantaneous
diffusivity decrease in the domain is a consequence of the linear increase of the crowders density p (r),
equation (2). This linear dependence of D (r) in equation (14) is our fourth main result.

5. Non-Gaussianity parameter and van Hove correlation function

Following reference [61] we now proceed to evaluate the experimentally relevant non-Gaussianity parameter for
the tracer diffusion in our crowded environment. Similar to the ergodicity breaking parameter EB [60, 109] it
contains the fourth order moment of the tracer time averaged MSD. Namely, in two-dimensions we have
[9,110]

2(82(A))

We find that for in—out diffusion the non-Gaussianity parameter assumes moderate values for shorter lag times
A while it becomes close to zero for longer lag times, figure 7(A). This is a typical long time behaviour of ergodic
tracer diffusion, compare figure 3(a) in [110]. Indeed, as we show in figure 5(E), in the long time limit the
ensemble and time averaged MSDs differ simply by the above mentioned factor of 2 for HDC In contrast for
out—in diffusion the non-Gaussianity parameter attains substantially larger values. This feature is likely due to
the highly non-reproducible trajectories of the tracer motion and prolonged localisation events near the domain
boundary at high crowder concentration.

The trapping as well as the non-Gaussianity of the tracer diffusion can also be characterised by the van Hove
correlation function G, (Ax, Ar) describing the probability that a particle moves a distance Ax during time At
[111,112],

15)

N
G.(Ax, Ar) = %Zé(xi(At) ~ x:(0) — Ax), (16)
i=1
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Figure 7. Non-Gaussianity parameter G (A) (15) for in—out and out—in tracer diffusion. Parameters are the same as in figure 5, and the
results are averaged over N = 10” tracer trajectories for a single configuration of crowders (M=1).
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Figure 8. Van Hove correlation function for homogeneous crowder distributions, at several ¢ values. Other parameters are the same
asin figure 3. The solid line shows the approximately Gaussian function obtained from our simulations for a tracer restricted to an
annulus without crowders. Panels (A) and (B) are for crowder radii R, = 5and R. = 1, respectively, computed for At = 100
corresponding to A t/8t = 10* simulation steps.

G(Ax, At)

Figure 9. Van Hove correlation function for (A) in—out and (B) out—in diffusion plotted for several crowder radii R. in HDC The solid
line shows the simulated distribution of a tracer restricted to an annulus without crowders: it almost superimposes with the results for
the largest crowders at R. = 10. Other parameters are the same as in figure 5.

where Nis the number of tracers used for averaging. For a system of hard spheres this function simply
corresponds to the Gaussian propagator [113] governed by the diffusion equation.

Figure 8 shows the behaviour of G, (Ax, At) for tracer diffusion in HDC We observe that for relatively large
crowders the probability of trapping events of the tracer particle is quite low and the distribution of tracer
displacements remains close to Gaussian for all ¢ studied, as it should (see panel (B) in figure 8). In contrast, for
small crowders the non-Gaussianity of the van Hove function becomes quite pronounced, in particular for
larger ¢, figure 8(A). A faster decay of the tracer displacements at high ¢ and for small crowders is a consequence
of tracer caging by crowders and anomalously slow diffusion. The almost exponential distributions for high
crowding fraction in panel (A) of figure 8 compare well with the experimentally measured step size distributions
for polymer diffusion on nano-patterned surfaces presented in figure 4 of [ 114] as well as for liposome diffusion
in nematic solutions of actin filaments in figure 3(C) of [115]. HDCs for tracer diffusion cause a separation of
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0.1

Figure 10. Survival probability S (¢) for (A) homogeneous crowding (tracers are released near the centre), and for HDC (2) for the
cases of (B) in—out and (C) out—in diffusion. The asymptote S (t) ~ t~'/2 from equation (17) is shown in panels (A) and (B). Different
colours indicate S (t) for various distances (r + a) from the centre within which the tracers are counted. Neither the inner boundary
atr = anor the outer boundary at varying radius (a + r) is absorbing in the simulations. The parameters for panels (A)—(C) are the
same as in figures 3 and 5, respectively, and the conditions of the most effective crowding are chosen, with a crowder radius R, = 1.
The averaging is performed over N = 10* tracer trajectories.
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Figure 11. The same as in figure 10 but computed for the effective diffusivity D (r) from figure 6(C). The asymptote S(t) ~ t~'/2is
shown in panels (A) and (B).

particles into slow and fast populations (compare [83]), reflected in a cusp of the particle distribution near the
origin and longer than Gaussian tails for large tracer displacements.

For HDC the behaviour of the van Hove function is illustrated in figure 9. We observe that for in—out
diffusion the distribution remains approximately Gaussian for all crowder radii R in our simulations. This
corresponds to the rather small non-Gaussianity parameter and quite limited spread of 62 curves. In contrast,
for out—in diffusion among small crowders G, (Ax, At)becomes progressively non-Gaussian. It features a
pronounced cusp near A x = 0 describing a prevalence of small displacements characteristic for subdiffusion in
rather confined conditions. The detailed behaviour of the non-Gaussianity parameter and the van Hove
correlation function represents the fifth main result of the present study.

6. Survival probability

First passage time statistics are important to describe cellular processes, for instance, to quantify the diffusion
limit of reactions triggered by incoming, diffusing molecules [116—118]. Similarly, the anomalously diffusive
motion of membrane channels is implicated in the function of centres responsible for the exchange of larger
particles across membranes [37]. In the present model for a membrane domain we focus on the survival
behaviour of particles arriving to the boundary from the centre surface (in—out case) or arriving to the centre
surface from the domain boundary (out—in case). To examine this behaviour we consider the survival
probability S (¢) that a tracer started either at the centre or at the boundary, and does not attain a distance
(a + r)away from the centre up to time ¢. This standard definition of the survival probability is directly related
to the probability density of the first arrival time () of the tracer to that distance [116—118].

Figure 10 shows S (¢) for homogeneous and heterogeneous MMC. For both homogeneous case and in—out
diffusion for HDC we observe at intermediate times

S(t) ~ /2, (17)

In turn, for out—in diffusion in HDC S () has only a very weak dependence on the diffusion time . As the
distance (a + r) increases the survival probability starts to follow the scaling behaviour at later times, figure 10.
Similar scaling relations were obtained for subdiffusive heterogenous diffusion processes with a diffusivity
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Figure 12. Probability density of arrival times p(#) for homogeneous crowding (panel (A)) and HDC for in—out (B) and out—in (C)
diffusion. The arrival of particles was evaluated at the radius r = (a + 30) for in—out diffusionand r = R — 30 for out—in diffusion,
to reach a satisfactory statistic. Parameters are the same as in figure 10, and the number of events in each panelis N = 5 x 10*%.

D(r) = DyA/(A + r?) for in—out diffusion of particles [84]. We also simulated the tracer diffusion in the
annulus without crowders but with the effective local radial diffusivity D (r) presented in figure 6(C). In these
simulations, the same scaling law (17) for S (t) was obtained, compare figures 10 and 11.

Figure 10 shows that the survival probability appears to saturate to finite values, instead of decaying to zero.
The non-zero limiting value of S () is related to the disorder averaging and should be equal to the fraction of
HDC in which the circle of radius a + r is not accessible for a finite size tracer. In fact, for such configurations
the survival probability is 1, and it is then weighted by the fraction of these configurations. The behaviour of S (¢)
is the sixth main result of this study.

The probability density (t) of arrival times of the tracer particle at the inner and outer boundaries of a given
domain for the particle diffusion in homogeneous and heterogeneous mixtures of crowders is shown in
figure 12. It reveals a decay

p(t) oc t73/2 (18)

atintermediate time scales when the scaling for S (¢) is very clear; namely, at times ¢ ~ 10?3, The observed
scaling of ((¢) is thus consistent with the general relation p(¢t) = —dS (¢)/dt known between the two quantities
[118]. A better statistic and larger domain size might, however, be needed in simulations to unambiguously
validate the precision of the scaling laws (17) and (18) and the regimes of their temporal validity.

7. Discussion and conclusions

The dynamics of the lateral mobility of individual lipid molecules in a lipid bilayer as well as of membrane
embedded proteins is of fundamental importance for the function of biological membranes. For instance, the
lipid demixing to form domains and patterns or protein complex formation are considered to be elementary
prerequisites for membrane associated processes. Here we studied a schematic two-dimensional model system
for such processes: small particles (the lipids or small embedded molecules) with a finite size diffuse in a static
array of large particles (the crowding proteins or protein complexes) at different crowding densities and crowder
distributions. We observed several remarkable effects that are of interest from a physical point of view but will
also impact the study of (quasi) two-dimensional crowded systems such as lipid bilayer membranes or fluidic
systems such as confined emulsions or colloids.

The spatial heterogeneity of physical systems is often modelled through space-dependent diffusivities D (x).
These approaches include deterministic prescribed shapes of D (x) [82—87] corresponding to the systematic
variation of the local particle diffusivity observed in living cells [65, 67]. Concurrently D (x) can be taken as a
spatially and temporally random quantity [119, 120]. Both kinds of processes may lead to non-stationary
anomalous diffusion exhibiting ageing even at long observation times [60]. Our extensive Langevin dynamics
simulations of tracer diffusion in a finite heterogeneous environment reveal transient anomalous diffusion with
anumber of features that are similar to these idealised stochastic models.

For point-like diffusers one would expect that smaller crowders impede the diffusion less, as the tracer can
always pass through even small gaps between the crowders. In turn, the point tracer would have to navigate
around larger crowders and thus be affected more severely. As we showed here the opposite effect occurs for a
tracer of a finite size, comparable to the size of the crowders. In this case small crowders significantly hamper the
spreading of the tracers as compared to larger crowders at the same crowding fraction ¢. Moreover, the van
Hove correlation function acquires an exponential shape at higher ¢ and small crowders, whereas this function
is nearly Gaussian and quite insensitive to the crowding fraction for large crowders. While one would expect this
effect to be somewhat mitigated by a finite yet small mobility of the crowders recent simulations studies of
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protein crowded lipid bilayers indicates that the motion is very similar to that of particles diffusing in static
obstacle arrays [43].

Concurrent to this effect we observe for larger, homogeneously distributed crowders an extended Brownian
regime of the ensemble averaged MSD, whose magnitude is almost independent of the crowding fraction within
the investigated range. The time averaged MSD in this case is also highly reproducible. For smaller crowders,
however, anomalous diffusion effects in the ensemble averaged MSD occur and become more severe as ¢
increases. Additionally, individual time averaged MSD curves demonstrate the early immobilisation of the tracer
particles in the quenched landscape, corresponding to the crossing of a local percolation threshold for the tracer
motion.

Similar effects were observed for HDCs. Due to the deterministic gradient of the crowder distribution, we
distinguished the two scenarios of in—out and out—in diffusion. The in—out case resembles in many aspects the
homogeneous case: the spread of the time averaged MSD is small, the van Hove correlation function is close to
Gaussian and weakly depends on the crowder size, and the survival probability exhibits the characteristic square
root decay at intermediate times. In contrast, the out—in case is marked by a highly non-Gaussian diffusion of the
tracer: high values of the non-Gaussianity parameter and a pronounced cusp in the van Hove correlation
function near A x = 0 reveal a prevalence of small displacements. This is characteristic for subdiffusive
processes. Moreover, the survival probability exhibits a very slow decay and tends to saturate at large values
reflecting the dominance of crowder configurations that block the tracer near the release point at the domain
boundary. As a consequence, the computed averages over tracer trajectories are dominated by few successful
translocation events.

Could some of the observations of our two-dimensional system also be relevant for the diffusion of particles
in the cytoplasm of biological cells? Many eukaryotic cells are often adhered onto surfaces and reveal a quasi two-
dimensional, fried egg shape [21, 31, 65, 84]. The vertical cell thickness may be as small as several microns or less,
as compared to tens of microns in the lateral dimension of non-adhered cells. This enables the tracking of tagged
diffusing particles for longer distances, for instance, by conventional fluorescence microscopy when the particles
need to stay close to the focal plane [121-123]. Still, we emphasise that for relatively small tracer particles (such as
small cellular proteins), the cell thickness even in its flat regions is much larger than the average inter-crowder
separations. However, larger diffusing particles may be impeded by crowders such as vesicles, often found in
great abundance in certain cell types such as insulin producing cells [20] or amoeba [35]. In these supercrowded
[35] cases our results could well be applicable albeit with a renormalised tracer particle size to accommodate for
some possible overlap due to the third dimension.

In the present study we neglected hydrodynamic interactions between the tracer and the crowders. In three-
dimensional systems this may affect the long time diffusion [2, 50, 124—126]. The slow, 1/r decay of this
hydrodynamic coupling implies that a diffusing particle is impacted by crowders from a finite distance that helps
avoiding to collide with the crowders. In the two-dimensional membrane system motivating our study the lipid
molecules themselves represent a fluid background in which the crowding proteins are embedded. Water
molecules are typically expelled from the bilayer and only wet its surfaces.

It will be of interest to extend our results to three-dimensional crowded situations, in particular, to the
superdense [ 1] cytoplasm of biological cells. There, the crowding induced changes in the diffusion of signalling
molecules is expected to impact gene regulation and metabolism [127] and also alter active transport properties
[21, 33, 34, 128]. Other extensions of the current model include polydisperse static and dynamic crowders [129—
131], cylindrical domains mimicking a typical bacterial shape [55, 132], specific and non-specific tracer-crowder
interactions [55, 61], three-dimensional computer simulations, a variable tracer size, as well as deformable and
non-spherical crowding particles [133, 134].
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