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Diffusive escape through a narrow opening:
new insights into a classic problem†

Denis S. Grebenkov*a and Gleb Oshaninb

We study the mean first exit time (Te) of a particle diffusing in a circular or a spherical micro-domain

with an impenetrable confining boundary containing a small escape window (EW) of an angular size e.

Focusing on the effects of an energy/entropy barrier at the EW, and of the long-range interactions

(LRIs) with the boundary on the diffusive search for the EW, we develop a self-consistent

approximation to derive for Te a general expression, akin to the celebrated Collins–Kimball relation in

chemical kinetics and accounting for both rate-controlling factors in an explicit way. Our analysis

reveals that the barrier-induced contribution to Te is the dominant one in the limit e - 0, implying that

the narrow escape problem is not ‘‘diffusion-limited’’ but rather ‘‘barrier-limited’’. We present the

small-e expansion for Te, in which the coefficients in front of the leading terms are expressed via some

integrals and derivatives of the LRI potential. Considering a triangular-well potential as an example,

we show that Te is non-monotonic with respect to the extent of the attractive LRI, being minimal for

the ones having an intermediate extent, neither too concentrated on the boundary nor penetrating

too deeply into the bulk. Our analytical predictions are in good agreement with the numerical

simulations.

1 Introduction

The narrow escape problem (NEP) is ubiquitous in molecular
and cellular biology and concerns diverse situations when a
particle, diffusing within a bounded micro-domain, has to
search for a small specific target on the domain’s boundary.1–8

A particle can be an ion, a chemically active molecule, a protein,
a receptor, a ligand, etc. A confining domain can be a cell, a
microvesicle, a compartment, an endosome, a caviola, etc., while
the target can be a binding or an active site, a catalytic germ, or a
narrow exit to an outer space, from which case the name of the
problem originates. The outer space can be an extracellular
environment or, as considered in recent analysis of diffusion
and retention of Ca2+-calmoduline-dependent protein kinase II
in dendritic spines,9,10 be the dendrite itself while the narrow
tunnel is a neck separating the spine and the dendrite. For all
these stray examples, called in a unified way the NEP, one is
generally interested to estimate the time needed for a particle,
starting from a prescribed or a random location within the
micro-domain, to arrive for the first time to the location of

the target. The history, results, and important advances in the
understanding of the NEP have been recently reviewed.11–15

Earlier works on NEP were focused on situations when the
confining boundary is a hard wall, i.e., perfectly reflecting
everywhere, except for the escape window (or a specific target),
which is also perfect in the sense that there is neither an energy
nor even an entropy barrier which the particle has to overpass
in order to exit the domain (or to bind to the specific site). Such
barriers are, however, always present in realistic situations: if a
particle experiences potential interactions with the confining
boundary, it has to surmount an energy barrier at the exit to the
outer space. Even in the absence of such interactions, there is
an entropy barrier at the exit merely due to the fact that
particles move from a bigger volume to a smaller, confined
spatial region.2,16–22 In the case of binding to specific sites on
the confining boundary, this binding does not occur with
probability 1 upon the first encounter with such a site but
occurs only with a finite probability again due to a finite barrier
the particle has to overpass. In the idealised situation, when
such barriers are simply discarded, the mean first exit time
(MFET) through this window is actually the mean first passage
time (MFPT) to its location. This MFPT was calculated by
solving the diffusion equation with mixed Dirichlet–Neumann
boundary conditions.14,23,24

Capitalising on the idea that the particle diffusion along
the bounding surface can speed up the search process, set
forward for chemoreception by Adam and Delbrück,25 for

a Laboratoire de Physique de la Matière Condensée, CNRS, Ecole Polytechnique,
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repressor–operator association by Eigen and Richter26 and for
protein binding to specific sites on a DNA by Berg et al.27

(see also more recent ref. 28 and 29), as well as on the idea of
the so-called intermittent search,30–38 more recent analysis of
the NEP dealt with intermittent, surface-mediated diffusive
search for an escape window, which also was considered as
perfect, i.e. having no barrier at its location. The MFPTs
were determined, using a mean-field39 and more elaborated
approaches,40–49 as a function of the adsorption/desorption
rates, and of the surface (Dsurf) and the bulk (D) diffusion
coefficients. It was found that, under certain conditions involving
the ratio between D and Dsurf, the MFPT can be a non-monotonic
function of the desorption rate, and can be minimised by an
appropriate tuning of this parameter.40–49

In this paper we analyse, for the special case D = Dsurf, the
problem of a narrow escape of a Brownian particle through a
small window located on the boundary of a three-dimensional
spherical or a two-dimensional circular domain‡ (see Fig. 1)
taking into account explicitly a finite energy and/or an entropy
barrier at the EW and the presence of long-range particle–
boundary interactions (beyond the usual hard-core repulsion)
characterised by a radially-symmetric potential W(r). We will
use the term ‘‘escape window’’ (EW) in what follows, but clearly
our results will also apply to situations when this targeted area
is an extended binding region or an active site. Our motivations
here are as follows:

(i) The adsorption/desorption rates (which can show a huge
variability28,50) cannot be tuned independently as they are
linked on the microscopic level by the particle–boundary inter-
actions. As a consequence, not all values of the latter para-
meters are physically possible and it is unclear a priori if the
non-monotonic behaviour of the MFPT observed in earlier
works can indeed take place in physical systems.

(ii) If diffusion along the surface may indeed speed up the
search for the EW in the case of contact§ attractive interactions
with the surface, it is natural to expect that, in the presence of
long-range attractive interactions with the surface, these typical
search times will be further reduced since the particle will feel
the surface on longer distances and will experience a drift towards
it. Moreover, on intuitive grounds, one may expect the existence of
some optimal extent of the interaction potential since for potentials
with an infinite extent, the problem will reduce to the one with
purely hard-wall interactions. Consequently, it may turn out
that the mean search time will be a non-monotonic function of
the extent of the interaction potential.

(iii) In realistic systems not every passage to the EW results
in the escape from the domain, but this event occurs only with
some finite probability, due to an energy or an entropy barrier,
the latter being dominated by the window size.2,16–22 Similarly,
chemical reactions with a specific site on the boundary of the
micro-domain are also never perfect but occur with a finite
probability defining some rate constant51 k (see also ref. 52).
This rate constant has already been incorporated into the
theoretical analysis of the NEP for systems with hard-wall or
contact interactions with the surface,46 but to the best of our
knowledge, its effect on the MFET has never been appreciated in
full detail.¶ We will revisit this analysis for the situations with
(and without) the long-range particle–boundary interaction.

These are the focal questions of our analysis. We proceed to
show that the MFET naturally decomposes into two terms: the
mean first passage time to the EW and the time necessary to
overcome the barrier at the entrance to the EW. We realise that
the MFPT to the EW is indeed an optimisable function of the
interaction potential, when these interactions are attractive, the
effects being more pronounced for spherical micro-domains
than for circular micro-domains. More specifically, we find that
while the MFPT appears to be a monotonic function of the
strength of the interaction potential at the boundary, it exhibits
a minimum with respect to the spatial extent of the potential,
which defines the force acting on the particle in the vicinity
of the boundary. We show that the optimum indeed occurs
for interactions of an intermediate extent, such that they are
neither localised too close to the confining boundary, nor
extend too deeply into the bulk of the micro-domain. In a
way, the observation that the MFPT exhibits a non-monotonic
behaviour as the function of the extent of the potential is
consistent with the earlier predictions for the optimum of the
MFPT with respect to the desorption rate, based on the models
with intermittent motion. As a matter of fact, the extent of
the potential defines the barrier against desorption from the

Fig. 1 Schematic picture of the narrow escape problem: an escape
window (EW) is a cap of polar angle e and diameter a = 2R sin e located
at the North pole of a sphere of radius R. A diffusive particle starts from a
point (r,y) (small filled circle) and eventually arrives to the EW.

‡ We note that other geometries, such as, e.g., a cylindrical one or a narrow slab
between two plates can be analysed within the approach developed here.

§ The term ‘‘contact’’ here means that a diffusing particle feels the boundary only
appearing in its immediate vicinity. The particle may then adsorb onto the
boundary in a non-localised way, perform surface diffusion and desorb back to
the bulk, re-appear in the vicinity of the boundary again, and etc. This is precisely
the physical picture underlying the idea of the intermittent, surface-mediated
search for the EW.
¶ See also ref. 15 and 53–55 for the analysis of the NEP with a stochastically-gated
EW, whose situation is equivalent, in the limit when the stochastic gating process
has no memory, to the presence of a partial reflection.56
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confining boundary, and hence controls the desorption rate.
There are, however, some discrepancies between our predictions
here and those based on intermittent modelling on which we
will comment in what follows.

Further on, focusing on the effect of a barrier at the entrance
to the EW, which is always present in realistic situations, we
demonstrate that the contribution to the MFET stemming out
from the passage through the barrier is more singular in the
limit e - 0 than the MFPT to the EW. This means that,
mathematically speaking, the former provides the dominant
contribution to the MFET implying that the narrow escape
problem is not ‘‘diffusion-limited’’ but rather ‘‘barrier-limited’’.
This observation has significant consequences for chemical and
biological applications.

Our analytical approach is based on the backward Fokker–
Planck equation with a long-range potential that governs the
MFET to an imperfect (partially-reflecting, k o N) EW for a
particle starting from a given location within the micro-
domain. We obtain an explicit approximate solution of the
resulting mixed boundary value problem by resorting to an
approximation devised originally by Shoup, Lipari and Szabo57

for the analysis of reaction rates between particles with inhomo-
geneous reactivity.58,59 Within this approximation, the exact
boundary conditions are replaced by some effective ones, reducing
the problem to finding self-consistent solutions. The original self-
consistent approximation was shown to be in good agreement
with numerical solutions of the problem.57,60

We adapt this approximation to the NEP and also incorpo-
rate the long-range potential interactions between the particle
and the boundary of the confining domain. Our theoretical
predictions, based on this self-consistent approximation, will
be checked against the available exact asymptotic results for
the case when the boundary is an impenetrable hard wall
(long-range interactions are absent) and when there is no
barrier at the entrance to the EW. For the general case, we will
verify our analytical predictions by extensive Monte Carlo
simulations and an accurate numerical solution of the original
mixed boundary problem by a finite elements method.

The paper is organised as follows: in Section 2 we describe
our model and introduce the main idea of the self-consistent
approximation (SCA). In Section 3 we obtain the solution of the
NEP with the modified boundary conditions, as prescribed by
the SCA. In Section 4 we first present the general expressions
for the MFET for three-dimensional spherical and two-
dimensional circular micro-domains, for arbitrary particle-
wall interactions, an arbitrary k and the EW of an arbitrary
angular size. Discussing its physical significance, we highlight
the crucial role of the partial reactivity and its effect on the
MFET. Further on, we show that in the narrow escape limit
e - 0 one can straightforwardly derive an asymptotic small-e
expansion for the MFET in which the expansion coefficients of
the leading terms are explicitly defined via some integrals and
derivatives of a rather arbitrary interaction potential. Lastly, in
the representative example of a triangular-well potential, we
discuss the role of repulsive and attractive particle–boundary
interactions and also demonstrate that the contribution to the

MFET due to the diffusive search for the location of the EW
(i.e., the MFPT to the EW) can be optimised by an appropriate
tuning of the spatial extent of the interaction potential. We also
analyse here some subtle issues related to the applicability
of the Adam–Delbrück dimensionality reduction scheme.25

Section 5 concludes the paper with a brief recapitulation of
our most significant results. Mathematical and technical details
are presented in the ESI,† where we describe the numerical
approaches used to verify our analytical predictions (SM1); derive
the asymptotic small-e expansions and determine the asymptotic
behaviour for short-range potentials (SM2); present solutions
in the absence of particle-wall interactions (SM3); and discuss
the particular case of a triangular-well interaction potential
for three-dimensional (SM4) and two-dimensional (SM5) micro-
domains (ESI†).

2 Model and basic equations

Consider a point particle diffusing, with a diffusion coefficient
D, in a three-dimensional sphere (3D case) of radius R or a two-
dimensional disk (2D case) of radius R, containing on the
confining boundary a small EW characterised by a polar angle
e and having a diameter a = 2R sin e, see Fig. 1. We stipulate
that, in addition to the hard-core repulsion at the boundary,
the particle interacts with the confining wall via a radially-
symmetric potential8 W(r). We hasten to remark that an
assumption that the interaction potential W(r) depends only
on the radial distance from the origin is only plausible in the
narrow escape limit, i.e., when the polar angle is small (e { p)
or, equivalently, the linear extent a of the EW is much smaller
than the radius R. Otherwise, the interaction potential can
acquire a dependence on the angular coordinates. Therefore,
from a physical point of view, this model taking into account
the long-range interactions with the boundary in a spherically-
symmetric form is representative only when e{ p. On the other
hand, for situations with W(r) � 0 the latter constraint can be
relaxed and our analysis is applicable for any value of e.

We are mainly interested in the MFET through the EW, Te,
from a uniformly distributed random location, sometimes
called the global MFET62 and defined as

Te ¼
1

Vd

ð
O
dVdtðr; yÞ; (1)

where Vd is the volume of the micro-domain O (V3 = 4pR3/3 for
the 3D case and V2 = pR2 for the 2D case) and t(r,y) is the mean
time necessary for a particle, starting from some fixed location
(r,y) inside the domain, to exit through the EW. Due to the
symmetry of the problem, t(r,y) depends on the radial distance

8 Note that W(r) defines the long-range interaction potential beyond the hard-
wall repulsion. Therefore, the (repulsive) part of realistic interaction potentials,
say that of the Lennard-Jones 12–6 potential, which strongly diverges near the
boundary can be thought off as already included into the hard-core part of the
interaction potential upon an appropriate choice of some effective location
of the boundary. In this case W(R) be will be a regular function and all its
derivatives at r = R will exist. We refer to ref. 61 for a more detailed discussion of
this issue.
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r to the origin (0 r r r R) and the polar angle y (0 r yr p) but
is independent of the azimuthal angle f for the 3D case. In the
2D case, the reflection symmetry of the circular micro-domain
with respect to the horizontal axis allows one to restrict the
polar angle to (0,p) as well. Although we focus in this paper
exclusively on the global MFET Te, the SCA yields the explicit
form of t(r,y) too.

The function t = t(r,y) satisfies the backward Fokker–Planck
equation.63 Due to rotation invariance of the problem, the
Laplace operator in the 3D case can be written in spherical
coordinates, yielding

t 00 þ 2

r
�U 0

� �
t 0 þ 1

r2 sin y
@

@y
sin y

@t

@y

� �
¼ �1

D
; (2)

where the prime here and henceforth denotes the derivative
with respect to the radial variable r, and U(r) is a dimensionless,
reduced potential: U(r) = bW(r), where b is the reciprocal
temperature measured in the units of the Boltzmann constant.
For the 2D case, the representation of the Laplace operator in
polar coordinates yields

t 00 þ 1

r
�U 0ðrÞ

� �
t 0 þ 1

r2
@2t

@y2
¼ �1

D
: (3)

In both cases, the backward Fokker–Planck equation is to be
solved subject to the reflecting boundary condition which holds
everywhere on the wall (r = R), except for the location of the EW,
on which a partially-adsorbing boundary condition is imposed.
For the backward Fokker–Planck equation, these mixed bound-
ary conditions have the form:**

�Dt 0jr¼R¼
ktðR; yÞ; 0 � y � e;

0; eo y � p;

(
(4)

where k is the proportionality factor (in units length/time),
which accounts for an energy or an entropy barrier at the
entrance to the EW. If such a barrier is absent, k = N and
one has a perfectly adsorbing boundary condition at the location
of the EW, in which case the first line of (4) becomes t(R,y) = 0 for
0 r yr e. Evidently, in this case Te is entirely determined by the
first passage to the EW.

Within the context of chemical reactions with an active site
located on the inner surface of the micro-domain, the first line
of (4) can be considered as the partially-reflecting reactive
boundary condition put forward in the seminal paper by
Collins and Kimball,51 and then extensively studied in the
context of chemical reactions64–68 and search processes.46,69,70

This condition states that the diffusive flux towards the EW
(left-hand side) is equal to the flux across the EW (right-hand
side) which is postulated to be proportional to the number of
particles at the EW. In probabilistic terms, eqn (4) incorporates
the possibility for a particle arriving at the EW to either exit the
domain, or be reflected back to the interior of the domain and

resume bulk diffusion.66 In the chemical context, k can be
written as k = K/(4pR2sg), where K is the usual elementary
reaction act constant (in units of volume times the number of
acts per unit of time within this volume) and sg = sin2(e) is the
geometric steric factor characterising the fraction of the boundary
area ‘‘covered’’ by the active site, so that 4pR2sg is simply the area
of the active site. In turn, K can be represented71 as K = f Vs

(see also the discussion in ref. 61), where f is the rate describing
the number of reaction acts per unit of time within the volume
Vs of the reaction zone around an active site. If the reaction
takes place within a segment of a spherical shell, defined by
R � r r r r R and y A (0,e), where r is the capture radius, one
has Vs = 4pR2rsg, so that k = fr. Clearly, a similar argument
holds for the case of the EW with an energy barrier; in this case
f can be interpreted as the rate of successful passages through
the EW and is dependent on the energy barrier via the standard
Arrhenius equation.72

Last but not least, even when the confining boundary is a
structureless hard wall so that an energy barrier is absent,
a particle, penetrating from a bigger volume (micro-domain) to
a narrower region of space, will encounter an entropy barrier DS
at the entrance to the EW; in this case16–22 bDS B ln(a/R),
a being the lateral size of the escape window. This suggests, in
turn, that k, associated with an entropy barrier, depends
linearly on a and hence, linearly on e. Therefore, for realistic
situations one may expect that k associated with an entropy
barrier is rather small, and gets progressively smaller when
e - 0, becoming a rate-controlling factor. However, the abso-
lute majority of earlier works on the NEP have been devoted so
far to the limit k = N, which corresponds to an idealised
situation when there is neither energy, nor even an entropy
barrier at the entrance to the EW so that the particle escapes
from the micro-domain upon the first arrival to the location
of the EW. In this case the MFET is just the MFPT to the EW.
As we will show, even if k is independent of e, the passage
through the barrier provides the dominant contribution to the
MFET in the narrow escape limit e - 0.

Our approach to the solution of the mixed boundary-value
problem in (2) and (4) for the 3D case or in (3) and (4) for the 2D
case in the presence of a general form of the reduced potential
U(r) hinges on the SCA developed by Shoup, Lipari and Szabo,57

who studied rates of an association of particles (e.g., ligands),
diffusing in the bath outside of an impenetrable sphere without
LRI potential (i.e., U(r) � 0), to some immobile specific site
covering only a portion of the outer surface of this sphere.
Within this approximation one replaces the actual, mixed,
partially adsorbing boundary condition in the first line of (4)
by an effective one – a condition of a constant flux through the
boundary at the location of the EW. More specifically, the mixed
boundary condition in (4) is replaced by an inhomogeneous
Neumann boundary condition:

Dt0|r=R = QY(e � y) (5)

where Y(y) is the Heaviside function and Q is the unknown flux
which is to be determined self-consistently using an appropriate
closure relation.

** Note that the boundary condition (4) for the forward Fokker–Planck equation

will have a different form63: �D t 0 þ tU 0ð Þr¼R ¼
ktðR; yÞ; 0 � y � e;

0; eo y � p;

(
i.e., it will

include the derivative of the potential.
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It is important to emphasise two following points: (i) the
solution of the modified problem (2) and (5) is defined up to a
constant while the solution of the original problem (2) and (4)
is unique. However, in the narrow escape limit e - 0, the
leading terms of the MFET diverge so that a missing constant
would give a marginal contribution. (ii) The replacement of the
boundary condition (4) by an effective one (5) does not guaranty,
in principle, that the solution t will be positive in the vicinity of
the EW, since the effective boundary condition requires that (4)
holds only on average (see also SM3, ESI†). We will show that
this approximation provides nonetheless accurate results for the
global MFET with zero and non-zero U(r).

3 Self-consistent approximation

In this section we adapt the SCA for the NEP and also incorpo-
rate within this approach the long-range potential interactions
with the confining boundary.†† Within this extended approach,
we derive general expressions for Te for arbitrary potentials in
both 2D and 3D cases, as functions of the radius R of the micro-
domain, the angular size e of the EW, the constant k, and the
bulk diffusion coefficient D.

3.1 3D case

The general solution of (2) can be written as the following
expansion

tðr; yÞ ¼ t0ðrÞ þ
X1
n¼0

angnðrÞPnðcosðyÞÞ; (6)

where Pn(cos(y)) are the Legendre polynomials, an are the
expansion coefficients which will be chosen afterwards to fulfil
the boundary conditions, gn(r) are the radial functions obeying

gn
0 0 ðrÞ þ 2

r
�U 0ðrÞ

� �
gn
0 ðrÞ � nðnþ 1Þ

r2
gnðrÞ ¼ 0; (7)

and lastly, t0(r) is the solution of the inhomogeneous problem
that can be written down explicitly as

t0ðrÞ ¼
1

D

ðc1
r

dx
eUðxÞ

x2

ðx
c2

dy y2e�UðyÞ; (8)

where c1 and c2 are two adjustable constants. We set c2 = 0 to
ensure the regularity of solution at r = 0. In order to fix the
constant c1, we impose the Dirichlet boundary condition at
r = R to get

t0ðrÞ ¼
1

D

ðR
r

dx
eUðxÞ

x2

ðx
0

dy y2e�UðyÞ: (9)

We emphasise that the Dirichlet boundary condition for t0(r) is
chosen here for convenience only. As mentioned earlier, the
solution of the modified problem (2) and (5) is defined up to a
constant which can be related to the constant c1 here. An
evident advantage of such a choice is that t0(r) in (9) is the

exact solution of the original problem in case when k = N

and e = p (i.e., the EW is the entire boundary of the sphere).
We turn next to the radial functions gn(r) defined in (7).

For n = 0 the radial function can be defined explicitly for an
arbitrary potential U(r) to give

g0ðrÞ ¼ c1 þ c2

ð
dx

eUðxÞ

x2
: (10)

To ensure that this solution is regular at 0, we again set c2 = 0,
so that g0(r) � 1 (we set c1 = 1 for convenience). For n 4 0,
explicit solutions of (7) can be calculated only when one makes
a specific choice of the interaction potential. In the next section
and in the ESI,† we will discuss the forms of gn(r) for a
triangular-well potential U(r). In general, we note that gn(r) are
also defined up to two constants. One constant is fixed to
ensure the regularity of the solution at r = 0. The second
constant can be fixed by the choice of their value at r = R.
Without any lack of generality, we set gn(R) = 1. As a matter of
fact, the final results will include only the ratio of gn(r) and of its
first derivative, and hence, will not depend on the particular
choice of the normalisation.

Next, substituting (6) into (5) we getX1
n¼1

anPnðcosðyÞÞgn
0 ðRÞ ¼ Q

D
Yðe� yÞ � t0

0 ðRÞ; (11)

where we have used g0(r) � 1. Multiplying the latter equation by
sin(y) and integrating over y from 0 to p, we find the following
expression for the flux Q:

Q ¼ 2Dt0
0 ðRÞ

1� cosðeÞ; (12)

where, in virtue of (9),

Dt0
0 ðRÞ ¼ �e

UðRÞ

R2

ðR
0

dr r2e�UðrÞ: (13)

Note that for U(r) � 0, the expression in (12) coincides with the
standard compatibility condition for the interior Neumann problem.
Note also that Q depends only on the form of the interaction
potential U(r), the micro-domain radius R, and the angular size e
of the EW but it is independent of the kinetic parameters k and D.

Further on, multiplying both sides of (11) by Pm(cos(y))sin(y)
and integrating the resulting equation over y from 0 to p, we
get, taking advantage of the orthogonality of the Legendre
polynomials, the following representation of the expansion
coefficients an:

an ¼
t0
0 ðRÞfnðeÞ
gn
0 ðRÞ ; n4 0; (14)

where we used (12) and defined

fnðeÞ ¼
Pn�1ðcosðeÞÞ � Pnþ1ðcosðeÞÞ

1� cosðeÞ ; n4 0: (15)

Gathering the above expressions, we rewrite (6) as

tðr; yÞ ¼ t0ðrÞ þ a0 þ t0
0 ðRÞ

X1
n¼1

gnðrÞ
gn
0 ðRÞfnðeÞPnðcosðyÞÞ; (16)

†† See also recent paper61 in which an analogous approach combined with a
hydrodynamic analysis has been developed to calculate the self-propulsion velocity
of catalytically-decorated colloids.
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in which only the constant a0 remains undefined. Since the
solution of the modified problem is defined up to a constant,
one could stop here, leaving a0 as a free constant. To be closer
to the original problem, we fix a0 through the self-consistency
condition by plugging (16) into (4) and (5), multiplying the
result by sin y and integrating over y from 0 to e, to get the
following closure relation:

�k
ðe
0

dy sinðyÞtðR; yÞ ¼ D

ðe
0

dy sinðyÞt 0jr¼R

¼ Q

ðe
0

dy sinðyÞ:
(17)

Using the latter relation, noticing that t0(R) = 0 by construction
(see (9)) and excluding Q via (12), we arrive at

a0 ¼ �Rt0
0 ðRÞ 2D

Rkð1� cosðeÞÞ þRð3Þe

� �
; (18)

where

Rð3Þe ¼
X1
n¼1

gnðRÞ
Rgn

0 ðRÞ
fn

2ðeÞ
ð2nþ 1Þ: (19)

Eqn (9), (15), (18) and (19) provide an exact, closed-form
solution (16) of the modified problem in (2) and (5) for the
3D case. This solution is valid for an arbitrary initial location of
the particle, an arbitrary reaction rate k and an arbitrary form of
the interaction potential U(r). We also note that R(3)

e in (19) is a
non-trivial function which encodes all the relevant information
about the fine structure of the interaction potential, as discussed
below.

3.2 2D case

We follow essentially the same line of thought like in the
previous subsection. In two dimensions eqn (7) for the radial
functions becomes

gn
0 0 þ 1

r
�U 0

� �
gn
0 � n2

r2
gn ¼ 0: (20)

The general solution for t(r,y) then reads

tðr; yÞ ¼ t0ðrÞ þ a0 þ 2t0
0 ðRÞ

X1
n¼1

gnðrÞ
gn
0 ðRÞ

sinðneÞ
ne

cosðnyÞ; (21)

where cos(ny) replace the Legendre polynomials from the 3D
case, and the solution of the inhomogeneous problem has
the form:

t0ðrÞ ¼
1

D

ðR
r

dx
eUðxÞ

x

ðx
0

dy y e�UðyÞ: (22)

The coefficient a0 in (21) is given explicitly by

a0 ¼ �Rt0
0 ðRÞ pD

Rke
þRe

ð2Þ
� �

; (23)

with

Rð2Þe ¼ 2
X1
n¼1

gnðRÞ
Rgn

0 ðRÞ
sinðneÞ
ne

� �2

: (24)

Eqn (21)–(24) determine an exact, closed-form solution t(r,y)
of the modified problem for the 2D case. Like in the 3D case,
R(2)

e in (24) contains all the relevant information about the long-
range interaction potential.

4 Results and discussion

Capitalising on the results of the previous section, we find the
following general expressions for the global MFET defined in (1):

T ð3Þe ¼ R2

3D
Rð3Þe L

ð3Þ
U ðRÞ þ

R2

3D

ð1
0

dxx4L
ð3Þ
U ðxRÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

diffusion to theEW

þ 2RL
ð3Þ
U ðRÞ

3kð1� cosðeÞÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
barrier at the EW

;

(25)

where L(3)
U is the functional of the potential U(r), given

explicitly by

L
ð3Þ
U ðrÞ ¼ 3

eUðrÞ

r3

ðr
0

dr r2e�UðrÞ; (26)

and

T ð2Þe ¼ R2

2D
Rð2Þe L

ð2Þ
U ðRÞ þ

R2

2D

ð1
0

dx x3L
ð2Þ
U ðxRÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

diffusion to theEW

þ pRLð2ÞU ðRÞ
2k sinðeÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

barrier at the EW

;

(27)

with

L
ð2Þ
U ðrÞ ¼ 2

eUðrÞ

r2

ðr
0

drr e�UðrÞ: (28)

For U(r) � 0, both L
(2)
U (r) and L

(3)
U (r) are simply equal to 1.

We note next that R(3)
e and R(2)

e vanish when e = p, so that the
second terms in the first line in (25) and (27), i.e.

T ð3Þp ðk ¼ 1Þ ¼
R2

3D

ð1
0

dxx4L
ð3Þ
U ðxRÞ (29)

and

T ð2Þp ðk ¼ 1Þ ¼
R2

2D

ð1
0

dx x3L
ð2Þ
U ðxRÞ; (30)

can be identified as the MFPTs from a random location in the
micro-domain to any point on the boundary of the micro-
domain, in the presence of the radially-symmetric interaction
potential U(r). In what follows we will show that these (rather
simple) e-independent contributions to the overall MFET
exhibit quite a non-trivial behaviour as functions of the para-
meters of the interaction potential U(r).

Eqn (25) and (27) are the main general results of our
analysis. We emphasise that these expressions have the same
physical meaning as the celebrated relation for the apparent
rate constant due to Collins and Kimball51 and define the
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global MFET as the sum of two contributions: the first one is the
time necessary for a diffusing particle (starting from a random
location within the micro-domain) to find the EW (i.e., the MFPT
to the EW), while the second one describes the time necessary to
overcome a finite barrier at the entrance to the EW, once the
particle appears in its vicinity. In probabilistic terms, the second
contribution comes from repeated failed attempts of a particle to
cross the EW and the resulting excursions back into the volume
at each failure.‡‡ Clearly, the last contribution vanishes when
k-N, i.e., in the perfect EW (reaction) case, while the first one
vanishes for an infinitely fast diffusive search, i.e., when D -N.
The additivity of the two controlling factors is a nontrivial result
that will permit us to study separately the effects due to a finite k,
and the effects associated with the diffusive search for the EW,
biased by the long-range potential U(r). We proceed to show that,
interestingly enough, the last term in (25) and (27) is always
dominant in the limit e - 0, i.e., the rate-controlling factor for
the NEP is the barrier at the entrance, not the diffusive search
process. To the best of our knowledge, this important conclusion
has not been ever spelled out explicitly, but may definitely have
important conceptual consequences for biological and chemical
applications.

One notices next that the first terms in (25) and (27) contain
infinite series R(3)

e and R(2)
e implying that these terms can be

explicitly determined only when one (i) specifies the interaction
potential, (ii) manages to solve exactly the differential eqn (7) or
(20) for the radial functions gn(r) corresponding to the chosen
U(r) and, (iii) is able to sum the infinite series. At the first
glance, this seems to be a severe limitation of the approach
because eqn (7) or (20) can be solved exactly only for a few basic
potentials. Quite remarkably, however, we managed to bypass
all these difficulties and to determine the asymptotic behaviour
of the MFET in the narrow escape limit e - 0 for a rather
general class of the interaction potentials without solving the
differential eqn (7) or (20). The circumstance, which allows us
to circumvent solving these equations, is that the small-e
behaviour of the infinite series R(3)

e and R(2)
e is dominated by

the terms gn(R)/gn
0(R) with n -N, whose asymptotic behaviour

can be directly derived from (7) and (20) for potentials U(r)
which have a bounded first derivative by constructing an
appropriate perturbation theory expansion. For such potentials,
we obtain (see SM2 for more details, ESI†):

Rð3Þe ¼
32

3p
e�1 þ 1� RU0ðRÞð Þ lnð1=eÞ

þ ln 2� 7

4
� 1

4
þ p2

12
þ ln 2

� �
RU0ðRÞ

þ
X1
n¼1
ð2nþ 1Þ gnðRÞ

Rgn
0 ðRÞ �

1

n
þ RU0ðRÞ

2n2

� �
þOðeÞ;

(31)

where U0(R) denotes the derivative of the interaction potential
right at the boundary, and the symbol O(e) signifies that the
omitted terms, in the leading order, vanish linearly with e when
e - 0. Note that one needs the precise knowledge of the radial
functions gn(r) only for the calculation of the subdominant,
e-independent term in the third line in (31).

Analogous calculations for the 2D case (see SM2, ESI†) entail
the following small-e expansion:

Rð2Þe ¼ 2 lnð1=eÞ þ 3� 2 ln 2

þ 2
X1
n¼1

gnðRÞ
Rgn

0 ðRÞ �
1

n

� �
þOðeÞ:

(32)

Again, the precise knowledge of the radial functions gn(r) is only
needed for the calculation of the e-independent term, which
embodies all the dependence on the interaction potential; the
leading term in this small-e expansion appears to be completely
independent of U(r).

Combining eqn (25) and (31) we find that for an arbitrary
potential U(r) possessing a bounded first derivative within the
domain, the MFET for the 3D case admits the following small-e
asymptotic form

T ð3Þe ¼ 4RL
ð3Þ
U ðRÞ
3k

e�2 þ 32R2L
ð3Þ
U ðRÞ

9pD
e�1

þ R2L
ð3Þ
U ðRÞ
3D

1� RU 0ðRÞð Þ lnð1=eÞ þ xð3ÞU þOðeÞ;

(33)

where the e-independent, sub-leading term xU is given
explicitly by

xð3ÞU ¼ T ð3Þp ðk ¼ 1Þ þ
RL

ð3Þ
U ðRÞ
9k

þ R2L
ð3Þ
U ðRÞ
3D

ln 2� 7

4
� ln 2þ 1

4
þ p2

12

� �
RU 0ðRÞ

�

þ
X1
n¼1
ð2nþ 1Þ gnðRÞ

Rgn
0 ðRÞ �

1

n
1� RU 0ðRÞ

2n

� �� �#
;

(34)

with the MFPT T (3)
p (k = N) to any point on the boundary being

defined in (29).
For the 2D case an analogous small-e expansion reads

T ð2Þe ¼ pRLð2ÞU ðRÞ
2k

e�1 þ R2L
ð2Þ
U ðRÞ
D

lnð1=eÞ

þ xð2ÞU þOðeÞ;

(35)

where the e-independent term x(2)
U is given explicitly by

xð2ÞU ¼ T ð2Þp ðk ¼ 1Þ

þL
ð2Þ
U ðRÞR2

D

3

2
� ln 2þ

X1
n¼1

gnðRÞ
Rgn

0 ðRÞ �
1

n

� � !
;

(36)

with T (2)
p (k = N) being defined in (30).

‡‡ In this light, the difference between the MFET and the MFPT (when the EW is
perfectly absorbing, k = N), provided by the last term in eqn (25) and (27), is a
measure of failed attempts to cross the EW. Another possibility to quantify the
number of reflections at the EW is to use the local time that reflected Brownian
motion spends on the boundary (e.g., see ref. 73).
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The expressions in (33) and (35) constitute our second
general result in the narrow escape limit. This result has several
interesting features which have to be emphasised.

(i) For quite a general class of the interaction potentials U(r),
these expressions make explicit our claim that in the narrow
escape limit e - 0 the dominant contribution to the MFET
comes from the passage through the barrier at the EW (first
terms in (33) and (35), defining the corresponding barrier-
crossing time Tb), rather than from the diffusive search for
the location of the EW (remaining terms in (33) and (35),
defining the MFPT TMFPT to the EW). Indeed, we observe that
the terms originating from the presence of a barrier have at
least one (or two if k B e) more inverse power of e, as compared
to the terms defining the MFPT to the EW. Dividing Tb by
TMFPT, we get in the leading order as e - 0

T
ð3Þ
b

T
ð3Þ
MFPT

’ 3p
8

D

kR
1

e
(37)

in three dimensions, and

T
ð2Þ
b

T
ð2Þ
MEPT

’ p
2

D

kR
1

e lnð1=eÞ (38)

in two dimensions. Since the ratio D/(kR) is finite, the right-
hand side of (37) and (38) diverges in the narrow escape limit
e- 0, meaning that a passage through the EW is the dominant
rate-controlling factor.

(ii) Remarkably, it appears that in order to determine the
coefficients in front of the leading terms (diverging in the limit
e- 0), we do not have to solve the differential equations for the
radial functions gn(r) but merely to integrate and to differentiate
the interaction potential. The resulting expressions for T (d)

e have
quite a transparent structure and all the terms entering (33) and
(35) have a clear physical meaning.

For both 3D and 2D cases, the coefficients in front of the
leading term associated with the barrier are entirely defined by
L(3)

U (R) and L(2)
U (R). For the 3D case, the coefficient in front of

the leading term in the MFPT to the EW, which diverges as 1/e,
is also entirely defined by the integrated particle-wall potential
U(r) via L(3)

U (R), while the sub-leading diverging term (Bln(1/e))
depends also on the force, �U0(R), acting on the particle at the
boundary of the micro-domain. In the 2D case, the coefficient
in front of the leading term in the MFPT to the EW, diverging as
ln(1/e), again is defined by the integrated potential via L(2)

U (R).
Therefore, details of the ‘‘fine structure’’ of the interaction

potential U(r) (i.e., possible maxima or minima for r away from
the boundary) which are embodied in the radial functions, have
a minor effect on T(3)

e and T(2)
e appearing only in the subdominant

terms, which are independent of e in the narrow escape limit.
(iii) The 1/e singularity of the MFPT to the EW is a specific

feature of the 3D case and stems from such diffusive paths,
starting at a random location and ending at the EW, which
spend most of the time in the bulk far from the boundary. Our
analysis shows how the presence of the long-range interaction
potential modifies the amplitude of the corresponding con-
tribution to the MFET. For the 3D case, the sub-leading,

logarithmically diverging term accounts for the contribution
of the paths which are most of the time localised near the
confining boundary. In what follows, we will discuss the relative
weights of these contributions considering the triangular-well
interaction potential as a particular example.

(iv) When the potential U(r) is a monotonic function of r, the
coefficients L(2)

U (r) and L(3)
U (r) are monotonic functions of the

amplitude U0 of the potential U(r). In fact, setting U(r) = U0U(r),
one gets

U0
@L

ðdÞ
U ðrÞ
@U0

¼ d

rd
eUðrÞ

ðr
0

dr rd�1e�UðrÞ½UðrÞ �UðrÞ� (39)

so that the derivative in the left-hand side does not change the
sign. For instance, if U(r) is an increasing function, then L(d)

U (r)
is also increasing for any U0 (even negative). As a consequence,
the coefficients in front of each term in (33) and (35) are
monotonic functions of the amplitude U0 of the potential so
that the global MFET is expected to be a monotonic function of
U0, at least in the narrow escape limit. In Section 4.2, consider-
ing a triangular-well potential as an example, we will quest the
possibility of having a minimum of the MFET with respect to
the extent of the interaction potential U(r).

4.1 Global MFET for systems without long-range potentials

To set up the scene for our further analysis, we consider the
expressions in (25) and (27) in case when the confining boundary
is a hard wall (i.e. U(r) � 0), concentrating on the dependence of
the global MFET on e, k, D and R. This will permit us to check
how accurate our approach is, by comparing its predictions
against few available exact results, and also to highlight in what
follows the role of the long-range interactions with the confining
boundary.

In the absence of the long-ranged interaction potential,
eqn (25) and (27) considerably simplify:

T ð3Þe ¼
2R

3kð1� cosðeÞÞ þ
R2

3D
Rð3Þe þ

1

5

� �
; (40)

T ð2Þe ¼
pR

2k sinðeÞ þ
R2

2D
Rð2Þe þ

1

4

� �
; (41)

where R(3)
e and R(2)

e become fully explicit

Rð3Þe ¼
X1
n¼1

fn
2ðeÞ

nð2nþ 1Þ; (42)

Rð2Þe ¼ 2
X1
n¼1

1

n

sin ne
ne

� �2

: (43)

The asymptotic small-e behaviour of these series is discussed in
detail in SM2 (ESI†).

We focus first on the asymptotic behaviour of Te in the limit
e - 0. Using the asymptotic small-e expansion, presented in
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(S25, ESI†), we find that in the 3D case

T ð2Þe ¼ 4R

3k
e�2 þ 32R2

9pD
e�1 þ R2

3D
lnð1=eÞ

þ R2

3D
ln 2� 31

20

� �
þ R

9k
þOðeÞ:

(44)

The first term in (44) is the contribution due to a finite barrier,
while the second and the third terms define the contribution
due to the diffusive search for the EW, stemming out of the
non-trivial term in (42) proportional to R(3)

e .
For k � N (i.e., in an idealised situation when there is

neither an energy nor even an entropy barrier at the entrance to
the EW), the first term in (44), proportional to 1/k and exhibiting
the strongest singularity in the limit e - 0, is forced to vanish, so
that the leading e-dependence of Te becomes determined by the
second term, diverging as 1/e. The first correction to this dominant
behaviour is then provided by the logarithmically diverging term.

Such an asymptotic behaviour qualitatively agrees with the
exact asymptotics due to Singer et al.:74

T ð3Þe ’
pR2

3D
e�1 þ lnð1=eÞ þOð1Þ
� �

; (45)

which contains both 1/e- and logarithmically diverging terms.
We notice however a small discrepancy in the numerical
prefactors: the coefficient 32/(9p) E 1.1318 in (40) slightly
exceeds the coefficient p/3 E 1.0472 in (45), the relative error
being as small as 8%. In turn, the amplitude of the subdominant
term, which is logarithmically divergent as e- 0, appears to be p
times less, as compared to the coefficient in the logarithmically
divergent term in (45). Therefore, for k �N and e - 0, the SCA
predicts correctly the dependence of the leading term of Te on the
pertinent parameters but slightly overestimates its amplitude, and
also underestimates the amplitude of the sub-dominant term,
associated with the contribution of the diffusive paths localised
near the confining boundary.

For the 2D case, the summation in (43) can be performed
exactly so that (41) can be written explicitly as

T ð2Þe ¼
pR

2k sinðeÞ þ
R2

D

xðeÞ
e2
þ R2

8D
; (46)

where

xðeÞ ¼
X1
n¼1

sin2 ne
n3

¼ 1

2
zð3Þ � 1

4
Li3 e2ie
� �

þ Li3 e�2ie
� �� �

; (47)

z being the Riemann zeta function, z(3) E 1.202, and Li3( y)

being the trilogarithm: Li3ðyÞ ¼
P1
n¼1

yn
	
n3. In the limit e - 0,

(46) admits the following asymptotic expansion

T ð2Þe ¼
pR
2k

e�1 þ R2

D
lnð1=eÞ þ R2

D

13

8
� ln 2

� �
þOðeÞ: (48)

Again, we notice that the first term, associated with the barrier
at the entrance to the EW, has a more pronounced singularity
as e - 0 than the second term stemming out of the diffusive
search for the EW. Hence, similarly to the 3D case, for

sufficiently small angular sizes of the EW, the controlling factor
is the passage via the EW, not the diffusive search for the
entrance to the latter.

The first term in (48), which is proportional to 1/k and
diverges as 1/e in the limit e - 0, is forced to vanish in the
idealised case k � N, and the leading small-e behaviour of
T (2)
e in (48) becomes determined by the second term, which

exhibits only a slow, logarithmic divergence with e. At this point
it is expedient to recall that the original mixed boundary-value
problem in (3) and (4) for the 2D case with k �N can be solved
exactly75–77 and here T(2)

e reads:

T ð2Þe ¼ R2

D

1

8
� lnðsinðe=2ÞÞ

� �

¼ R2

D
lnð1=eÞ þ R2

D
ln 2þ 1

8

� �
þO e2

� �
:

(49)

Comparing the solution of the modified problem in (48) with
k � N, and the exact small-e expansion in the second line in
(49), we conclude that the leading terms in both equations
coincide. This means that for the 2D case the SCA developed in
the present work determines exactly not only the dependence of
the leading term on the pertinent parameters, but also the
correct numerical factor. The subdominant, e-independent
term in (48) appears to be slightly larger, by 3/2 � 2 ln 2 E 0.114,
than the analogous term in the exact result in (49).

Since the SCA is applicable to any size of the EW, we will
check its accuracy for the EWs extended beyond the narrow
escape limit. As a matter of fact, for chemical reactions involving
specific sites localised on the confining boundary, the angular size
of the latter is not necessarily small. To this end, in the remaining
part of this subsection we will check the e-dependence of Te in (40)
and (46) for k �N, as well as the k-dependence of Te for fixed e,
and will compare our predictions against the results of numerical
simulations (see SM1, ESI†).

We first consider the well-studied case when there is no
barrier at the EW (k = N), so that the first term in (40) vanishes.
In the 3D case, Fig. 2a compares the SCA prediction in (40), the
asymptotic relation (45) by Singer et al.,74 and the numerical
solution of the original problem by a finite elements method
(FEM) and by Monte Carlo (MC) simulations, which are
described in SM1 (ESI†). We observe a fairly good agreement
over the whole range of target angles, for e varying from 0 to p,
which is far beyond the narrow escape limit, and the dimen-
sionless parameter DTe/R

2 varying over more than two decades.
We find that the SCA provides an accurate solution even for
rather large e, at which the asymptotic relation (45) completely
fails. A nearly perfect agreement is also observed for the 2D case
(see Fig. 2b).

Next, we study the k-dependence of the global MFET. As we
have already mentioned, the SCA predicts that the presence of a
finite barrier at the entrance to the EW (and hence, for a finite k)
is fully captured by the first term in (40) and (41). Fig. 3
illustrates how accurately the SCA accounts for the effect of a
partial reactivity k on the global MFET Te, even for not too small
EW (e.g., for e = p/4) and a broad range of reactivities k. For even
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larger EW, the SCA is still accurate for small k but small
deviations are observed at larger k (not shown). As expected,
the global MFET diverges as k - 0 because the EW becomes
impenetrable, as the remaining part of the boundary is. In the
opposite limit k-N, the MFET approaches a constant which is
precisely the MFPT to the EW. Comparing the MFET and its
limiting value (the MFPT), one can appreciate the significant
effect of the barrier on the exit process. Similar results are
obtained for the 2D case. Overall, we observe a fairly good
agreement between our theoretical predictions and the numerical
simulations, for both 3D and 2D cases.

4.2 Global MFET for a system with a triangular-well potential

We focus on a particular choice of the interaction potential
U(r) – a triangular-well radial potential – defined as (see also
Fig. S2 in SM4, ESI†)

UðrÞ ¼
0 0 � r � r0;

U0
r� r0

R� r0
; r0 o r � R;

8<
: (50)

where 0 r r0 r R, R � r0 � lext is the spatial extent of the
potential (a characteristic scale) and U0 is a dimension-
less strength of the potential at the boundary, U(R) � U0.

Note that �U0/lext can be interpreted as a constant force
exerted on the particle when it appears within a spherical
shell of extent lext near the boundary of the micro-domain.
The strength of the potential can be negative (in the case of
attractive interactions) or positive (in the case of repulsive
interactions). For this potential, we find explicit closed-
form expressions for the radial functions gn(r) (see SM4
and SM5, ESI†) and examine the dependence of the global
MFET on U0, r0 and other pertinent parameters, such as,
e, D, and R.

We begin with the analysis of the functionals L
(3)
U (R) and

L
(2)
U (R), which define the amplitudes of all e-diverging leading

terms in (33) and (35). For the triangular-well potential in (50),
these functionals are given explicitly by

L
ð3Þ
U ðRÞ ¼

3

U0
3



�2� 2U0 �U0

2 þ 6þ 4U0 þU0
2

� �
x0

� 2 3þU0ð Þx02 þ 2x0
3 þ eU0

�
2þ 2 U0 � 3ð Þx0

þ 6� 4U0 þU0
2

� �
x0

2

� 2� 2U0 þU0
2 �U0

3

3

� �
x0

3

��
;

(51)

Fig. 2 Hard-wall interactions (U(r) � 0) and no barrier at the EW (k = N).
The dimensionless global MFET, DT(d)

e /R2, as a function of the target angle
e. (a) 3D Case. Our SCA prediction in (40) and the asymptotic relation in
(45) are shown by solid and dashed lines, respectively. The numerical
solution by the FEM (with the mesh size 0.01) is shown by circles, while the
Monte Carlo simulations are shown by crosses. (b) 2D Case. Our SCA
prediction in (46) (solid line) is compared against the exact result in (49)
(dashed line), numerical FEM solution (circles) and MC simulations (crosses).

Fig. 3 Hard-wall interactions (U(r) � 0) with a barrier at the EW. The
dimensionless global MFET, DT(d)

e /R2, as a function of a dimensionless
parameter kR/D for e = 0.1 (solid line), e = 0.2 (dashed line) and e = p/4
(dash-dotted line): (a) 3D case and (b) 2D case. The SCA (lines) is compared
to numerical solutions obtained by a FEM (with the mesh size 0.01), which
are shown by symbols.
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where x0 = r0/R, and

L
ð2Þ
U ðRÞ ¼

2

U0
2



�1�U0 þ U0 þ 2ð Þx0 � x0

2

þ eU0 1þ U0 � 2ð Þx0 þ 1�U0 þ
U0

2

2

� �
x0

2

� ��
;

(52)

for the 3D and the 2D cases, respectively. We plot expressions
in (51) and (52) in Fig. 4 as functions of U0 for different values
of r0. We observe that for any fixed r0, L(3)

U (R) and L(2)
U (R) are

monotonically increasing functions of U0, which agrees with
the general argument presented earlier in the text. In turn, for
any fixed U0 4 0 (repulsive interactions with the boundary),
they are increasing functions of r0 which means that they are
decreasing functions of the extent of the potential, lext = R � r0.
Therefore, all the contributions to the global MFET Te become
larger for stronger repulsion (as they should) and also get
increased upon lowering the extent the potential (i.e., upon
an increase of the force �U0/lext pointing towards the bulk and
hindering the passage to and through the EW). For sufficiently
large positive U0 and for any r0 4 0, the dominant contribution
to L

(d)
U (R) is

L
(d)
U (R) B (r0/R)d exp(U0), d = 2, 3, (53)

so that the coefficients in the small-e expansions of Te in (33)
and (35) become exponentially large with U0.

In turn, for negative values of U0 (attractive interactions),
L

(3)
U (R) and L

(2)
U (R) decrease upon an increase of |U0| and also

decrease when r0 approaches R, i.e., when the interactions
become short ranged.

4.3 Adam–Delbrück scenario: limit x = RU0/(R � r0) - �N
Before we proceed to the general case with arbitrary U0 and r0,
we discuss first the situations when the dimensionless parameter

o ¼ RU 0ðRÞ ¼ RU0

R� r0
; (54)

has large negative values. This can be realised for either big
negative U0, which case is more of conceptual interest but is
apparently not very realistic, or for short-range potentials with
fixed U0 o 0 and r0 close to R, the latter case being physically quite
meaningful.

For such values of o the leading behaviour of the amplitudes
L

(3)
U (R) and L

(2)
U (R) is simply described by

L
ðdÞ
U ðRÞ �

d

joj; d ¼ 2; 3; (55)

i.e., the amplitudes vanish as o - �N as a first inverse power
of o. This means, in turn, that all the contributions to
T (d)
e which are multiplied by L

(d)
U (R) (i.e., both the contribution

due to a barrier at the EW and the MFPT to the EW) decrease in
the presence of attractive interactions with the boundary of the
micro-domain.

We analyse next the behaviour of another key ingredient of
(33) and (35) – the infinite series R(3)

e and R(2)
e . We realise that

there is a subtle point in the behaviour of the latter which stems
from the fact that the limit of large negative o and the narrow
escape limit e- 0 do not commute. Taking the limit e- 0 first
and then turning to the limit o - �N, we arrive at the
expression which describes correctly the behaviour of R(3)

e and
R(2)

e for small e and moderately large |o| such that |o| { 1/e. If,
in contrast, we first take the limit o - �N for a fixed e, and
then take the limit e - 0, we obtain the correct large-|o|
behaviour, which yields physically meaningful results for
infinitely large negative o. This point is discussed in detail in
SM2 (ESI†).

Accordingly, for the 3D case in the narrow escape limit e- 0
with large but finite negative o, such that 1 { |o| { 1/e,
we have

T ð3Þe ’
R2

D
lnð1=eÞ þ ln joj þ ðg� 3=2Þð Þ þ T ð3Þp ðk ¼ 1Þ

þ 1

joj
4R

k
e�2 þ 32R2

3pD
e�1 þOð1Þ

� �
;

(56)

where g E 0.577 is the Euler–Mascheroni constant and the
MFPT T(3)

p (k = N) from a random location to any point

Fig. 4 The amplitudes L(3)
U (R) (a) and L(2)

U (R) (b) in (51) and (52) vs. U0 for
r0 = 0 (solid line), r0/R = 0.25 (dashed line), r0/R = 0.5 (dash-dotted line)
and r0/R = 0.75 (dotted line).
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on the boundary is given explicitly for the triangular-well
potential by

T ð3Þp ðk ¼ 1Þ ¼
r0
5

15DR3
� R2

12Do

�
x0

4 þ 3

þ8

o
þ 12

o2
� 24

o4

�
þ R2eU0

3Do
x0

3 þ x0
2 3� x0ð Þ

o

�

þ 3x0 2� x0ð Þ
o2

þ 6 1� x0ð Þ
o3

� 6

o4

�
:

(57)

Note that in the limit o - �N, the MFPT T(3)
p (k = N) becomes

T ð3Þp ðk ¼ 1Þ ¼
r0
5

15DR3
þO

1

joj

� �
; (58)

where the leading term in this limit can be interpreted as the
product of the probability (r0/R)3 that the particle’s starting
point is within the spherical region of radius r0 (in which
diffusion is not influenced by the potential) and the MFPT,
equal to r0

2/(15D), from a random location within this spherical
region to its boundary. Clearly, when a particle reaches the
extent of the infinitely strong attractive potential (or if it was
started in that region), it is drifted immediately to the boundary,
and this step does not increase the MFPT.

On the other hand, for small e and negative o which can be
arbitrarily (even infinitely) large by an absolute value, we find
(see SM2, ESI†)

T ð3Þe ’
R2

D
2 lnð1=eÞ þ ln 2� 1=4ð Þ þ T ð3Þp ðk ¼ 1Þ

þ 1

joj
4R

k
e�2 þOð1Þ

� �
;

(59)

which differs from the expression in (56) in two aspects: the
amplitude of the dominant term, which diverges logarithmically
as e - 0, is twice larger, and the term ln|o|, which diverges
logarithmically as o - �N, is absent.

Therefore, we observe that attractive interactions with either
large negative U0, or fixed negative U0 and r0 B R (both giving a
large negative o according to (54)), effectively suppress the
contribution due to a finite barrier at the entrance to the EW,
and also the contribution due to the diffusive paths which find
the EW via 3D diffusion. In contrast, such interactions do not
affect the term which is logarithmically diverging as e - 0 and
is associated with the paths localised near the confining
boundary. In other words, in this limit the plausible scenario
to find the EW is that of the dimensionality reduction, suggested
by Adam and Delbrück:25 a particle diffuses in the bulk until it
hits the confining boundary at some random position (which
takes time of order of r0

5/(15DR3), see the first term in (57)), and
then diffuses along the boundary, not being able to surmount
the barrier against desorption and to escape back to the bulk,
until it ultimately finds the EW (the term 2R2 ln(1/e)/D).

It is worthwhile to mention that our SCA approach repro-
duces the leading behaviour in the limit e- 0 of the MFPT due
to the surface diffusion exactly, i.e., not only the e-dependence

but also the numerical factor in the amplitude. In fact, the
mean time Ts needed for a particle, diffusing on a surface of a
3D sphere and starting at a random point,§§ to arrive for the
first time to a disc of an angular size e located on the surface of
this sphere has been calculated exactly:64

Ts ¼
R2

D
ln

2

1� cos e

� �
� 1þ cos e

2

� �
(60)

’ R2

D
2 lnð1=eÞ þ 2 ln 2� 1þO e2

� �� �
: (61)

Comparing (59) and (61), we notice that the leading terms in
both expressions are identical, and that both expressions differ
slightly only by numerical constants in the e-independent terms.

In the 2D case with large negative o, the dominant
contribution to the MFET comes not from the logarithmically
diverging term in the limit e - 0, as one could expect, but
rather from the infinite sum in the second line in (36), which is
independent of e. We discuss this observation in SM2 (ESI†)
and show that this sum diverges in proportion to |o| when
o - �N. Using the asymptotic relation (S61, ESI†), which
presents this contribution to R(2)

e in an explicit form, we find

T ð2Þe ¼ T ð2Þp ðk ¼ 1Þ þ
p2R2

3D
þOð1Þ

þ 1

joj
pR
k
e�1 þ 2R2

D
lnð1=eÞ

� �
;

(62)

where T(2)
p (k = N) is the MFPT from a random location within

the disc to any point on its boundary. For the triangular-well
potential the latter is given explicitly by

T ð2Þp ðk ¼ 1Þ ¼
r0
4

8DR2
� R2

6Do
x0

3 þ 2þ 3

o
� 6

o3

� �

þ R2eU0

2Do
x0

2 þ x0 2� x0ð Þ
o

þ 2 1� x0ð Þ
o2

� 2

o3

� �
:

(63)

For large negative o, the leading term in (63) is r0
4/(8DR2). This

term can be simply interpreted as the mean time, equal to
r0

2/(8D), needed to appear for the first time within the reach of
the triangular-well potential for a particle whose starting point
is uniformly distributed within the subregion r o r0 (in which
diffusion is free), multiplied by the probability r0

2/R2 that this
starting point is within this subregion.

Hence, in the limit o - �N, we obtain for the 2D case

T ð2Þe �
r0

R

� 2 r02
8D
þ p2R2

3D
: (64)

Again, we observe that the contribution due to a barrier at the
EW, and the leading, logarithmically divergent contribution to

§§ For a starting point fixed by an angular coordinate y, the MFPT for surface diffusion

is known to be tsðyÞ ¼
R2

D
ln

1� cos y
1� cos e

� �
for er yr p, and 0 otherwise. Averaging the

latter expression over the uniformly distributed starting point, i.e., performing the

integral Ts ¼
1

4p

Ð 2p
0
dj
Ð p
0
dy sin ytsðyÞ; one obtains the expression in (60).
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the MFPT to the EW due to a two-dimensional diffusive search
within the disc are both suppressed by attractive interactions.
Indeed, in this case a plausible Adam–Delbrück-type argument25

states that a diffusive particle first finds the boundary of the disc
(the first term in (64)), and then diffuses along the boundary
until it ultimately finds the EW. For arbitrary e the latter MFPT is
well-known and is given by

Ts ¼
R2

D

ðp� eÞ3
3p

¼ p2R2

3D
þOðeÞ; (65)

where the leading term on the right-hand side is exactly the same
as the second term in (64). This implies that our SCA predicts
correctly the values of both MFPTs.

To summarise the results of this subsection, we note that
the behaviour observed in the limit o - �N follows precisely
the Adam–Delbrück dimensionality reduction scenario for both
3D and 2D cases. Our expressions (59) and (62) provide the
corresponding MFETs, and also define the correction terms
due to finite values of o. We emphasise, however, that the limit
o - �N is an extreme case. For modest negative o the
representative trajectories for both three-dimensional and
two-dimensions systems will consist of paths of alternating
phases of bulk diffusion and diffusion along the boundary.
We analyse this situation below.

4.4 Beyond the Adam–Delbrück scenario: arbitrary U0 and r0

Consider the behaviour of the global MFET defined in (33) or
(35) for arbitrary U0 and r0. Taking into account the explicit
expressions for L(3)

U (R) in (51) and for L(2)
U (R) in (52), we notice

that the coefficients in front of each term in (33) and (35) are
monotonic functions of U0.¶¶ This implies that in the narrow
escape limit e - 0, we do not expect any non-monotonic
behaviour of the global MFET with respect to U0. A thorough
analytical and numerical analysis of T(d)

e shows that it is indeed
the case.

In turn, as we expected on intuitive grounds, for attractive
particle–boundary interactions the global MFET T(d)

e appears to
be a non-monotonic, and hence, an optimisable function of the
extent of the potential. This is a new spectacular feature of
the NEP unveiled by our model involving spatially-extended
interactions with the confining boundary. In Fig. 5a and b we
plot T(3)

e and T(2)
e , defined by (33) and (35) with k = N, as a

function of r0 for several negative values of U0 (U0 = �1, U0 = �2
and U0 = �5) and e = 0.02. We remark that the first terms in (33)
and (35), associated with a finite barrier and dropped by setting
k = N, are monotonic functions of r0.

We observe that in the 3D case, the global MFET T(3)
e , as a

function of r0, exhibits a rather pronounced minimum for r0

away from r0 = 0 and from r0 = R (contact interactions). This
means that there exists an optimal extent of the potential:
in order to minimise the global MFET, the potential should

neither extend too deep into the bulk nor should be too
localised on the boundary. Further on, we realise that the precise
location of the minimum of T(3)

e depends, in general, on e and
U0. Analysing our result in (33), we observe that when we
gradually decrease e, the minimum becomes more pronounced
and moves closer to the boundary (but never reaches it and
T (3)
e still exhibits a very abrupt growth when r0 becomes too close

to R). Conversely, if we progressively increase e, the minimum
moves away from the boundary and becomes more shallow.
Increasing the strength of attractive interactions (while keeping e
fixed) also pushes the minimum closer to the boundary.

For the 2D case the global MFET T (2)
e shows a qualitatively

similar behaviour but the effects are much less pronounced. In
principle, the optimum also exists in this case, but the minimum
appears to be much more shallow. We also observe that for strong
attraction (U0 = �5), T (2)

e appears to be almost independent of r0.
As in the analysis of the NEP without the particle–boundary

interactions in Section 4.1, one can observe some small dis-
crepancies between the asymptotic relations (33) and (35) and
numerical solutions of the original problem by a FEM. As
discussed earlier, they are related to the SCA approximation,
in which the mixed boundary condition is replaced by an
effective inhomogeneous Neumann condition. On the other
hand, the proposed approximation provides explicit asymptotic
formulae for arbitrary potentials that capture qualitatively well
all the studied features of the NEP.

Fig. 5 The dimensionless global MFET, DT(d)
e /R2, as a function of x0 = r0/R

for a triangular-well potential with no barrier at the EW, k = N. Our analytical
predictions are shown by curves for three values of U0 and e = 0.02. Symbols
present numerical solutions obtained by a FEM (with the mesh size 0.005). (a)
3D case, T(3)

e is given by (33); (b) 2D case, T(2)
e is given by (35).

¶¶ In principle, the coefficient in front of the logarithm, which contains the
factor (1 � RU0/(R � r0)), can become negative in the case of repulsive interactions
but it appears that it has a little effect on the whole expression and does not cause
a non-monotonic behaviour.
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Two remarks are now in order:
(i) Emergence of an optimum at an intermediate extent of

the potential implies that the Adam–Delbrück dimensionality
reduction scenario (which corresponds to o- �N, and hence
to the part of the curves in Fig. 5a and b close to r0 = R where
T (3)
e exhibits quite a steep growth attaining large values) is not at

all the optimal (i.e., less time consuming) way of finding the
EW. In reality, the optimum corresponds to situations when the
barrier against desorption is not very large so that the particle
does not remain localised near the boundary upon approaching
it for the first time, but rather has a possibility to overpass the
barrier against desorption and to perform alternating phases of
bulk and surface diffusion. The optimum then corresponds to
some fine-tuning of the relative weights of bulk and surface
diffusion by changing the extent of the potential and its value
on the boundary.

(ii) These findings are compatible, in principle, with the
prediction of the non-monotonic behaviour of T (d)

e as a func-
tion of the desorption rate l made earlier in ref. 41, in which
the NEP with k = N has been analysed for an intermittent
diffusion model. In this model a particle diffuses in the bulk
with a diffusion coefficient D until it hits the boundary of the
micro-domain and switches to surface diffusion of a random
duration (controlled by the desorption rate l) with a diffusion
coefficient Dsurf. This model tacitly presumes that there are
some attractive interactions with the surface, in addition to the
hard-core repulsion, which are taken into account in some
effective way (interactions are replaced by effective contact
ones). In our settings, the desorption rate l in this intermittent
model should depend on both the strength of the interaction
potential U0 at the boundary and also on the gradient of the
potential in the vicinity of the surface, which define the barrier
against desorption. There is, however, some quantitative dis-
crepancy between our predictions and the intermittent model
results: in ref. 41 (see Fig. 10, right panel), it was argued that for
such an intermittent model with D = Dsurf (as in our case)
surface diffusion is a preferable search mechanism so that the
global MFET is a monotonic function of l (in the 3D case). In
contrast, our analysis demonstrates that T(3)

e is an optimisable
function even in the case of equal bulk and surface diffusion
coefficients, which means that neither the bulk diffusion nor
2D surface diffusion alone provide an optimal search mechanism,
but rather their combination. This discrepancy is related to subtle
differences between two models. For the two-dimensional case,
illustrated in Fig. 5b, the analysis in ref. 41 (see Fig. 10, left panel)
suggests that there is an optimum even for D = Dsurf. Our analysis
agrees with this conclusion.

We close with a brief analysis of the behaviour of T (d)
p (k = N) –

the MFPT for a diffusive particle, starting at a random location, to
arrive at any point on the boundary of the micro-domain, in the
presence of long-range interactions with the boundary. This
MFPT is included into T (d)

e but has a little effect on it since it
enters only the constant, e-independent terms. At the same time,
it is an interesting quantity in its own right. For the triangular-
well potential, T (d)

p (k = N) is defined explicitly by (57) and (63) for
d = 3 and d = 2, respectively.

A first intuitive guess is that increasing either U0 or the
extent of the potential would make the particle feel the surface
stronger, so that for U0 4 0, the MFPT T (d)

p (k = N) would be an
increasing function of both parameters, while for U0 o 0,
T (d)
p (k = N) would decrease with an increase of both U0 and

r0. As far as the dependence on U0 is concerned, this guess
appears to be correct. Indeed, we observe that for a fixed r0, the
MFPTs for both d = 2 and d = 3 are monotonic increasing
functions of U0. Surprisingly enough, this is not the case for the
dependence of the MFPTs T (d)

p (k = N) on the extent lext of the
potential. We find that for a fixed U0, T (d)

p (k = N) exhibits a
peculiar non-monotonic behaviour as a function of r0, with a
minimum for U0 o 0 and a maximum for U0 4 0, as illustrated
in Fig. 6. To the best of our knowledge, this interesting effect
has not been reported earlier.

5 Conclusion

To recapitulate, we have presented some new insights into the
narrow escape problem, which concerns various situations
when a particle, diffusing within a bounded micro-domain,
has to escape from it through a small window (or to bind to
some target site) of an angular size e located on the impenetrable
boundary. We have focused on two aspects of this important
problem which had not received much attention in the past: the
effects of an energy or an entropy barrier at the escape window,

Fig. 6 The dimensionless MFPT, DT(d)
p (k = N)/R2, for a triangular-well

potential in (50) versus r0/R for several values of U0. (a) 3D case, (b) 2D
case. The exact formulae (57) an (63) (lines) are compared to numerical
solutions obtained by a FEM (with the mesh size 0.05; shown by symbols).
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always present in realistic systems, and the effects of long-range
potential interactions between a diffusing particle and the
boundary (e.g., such potentials can mimic non-specific binding
mechanisms of proteins to DNA molecules in the facilitated
diffusion model28,78). Inspired by the self-consistent approxi-
mation developed previously in ref. 57 for calculation of the
reaction rates between molecules with inhomogeneous chemical
reactivity, we generalised this approach to the NEP with long-
range potential interactions with the boundary. In this self-
consistent approach, the original mixed boundary condition is
replaced by an effective inhomogeneous Neumann condition, in
which the unknown flux is determined from an appropriate
closure relation. This modified problem was solved exactly for an
arbitrary radial interaction potential.

We have concentrated on the functional form of the global
(or volume-averaged over the starting point) mean first exit
time, Te, for which we derived a general expression analogous to
the celebrated Collins–Kimball relation in chemical kinetics,
incorporating both the contribution due to a finite barrier at
the escape window (or a binding site) and the contribution due
to a diffusive search for its location, for an arbitrary radially-
symmetric potential, any size of the escape window, and a
barrier of an arbitrary height. We have realised that these
two contributions naturally decouple from each other, which
permitted us to study separately their impact on the MFET.

The accuracy of our analytical results based on the self-
consistent approximation has been confirmed by two independent
numerical schemes: a numerical solution of the backward Fokker–
Planck equation by a finite elements method, and Monte Carlo
simulations of the diffusive search for the escape window in the
presence of particle–boundary potential interactions. We have
shown that the self-consistent approximation is very accurate
for small escape windows (i.e., in the narrow escape limit) but
also captures quite well the behaviour of the global MFET even
for rather large escape windows. In the latter case, small
deviations were observed, related to the fact that the solution
of the modified problem is defined up to a constant.

Turning to the narrow escape limit e - 0, we have analysed
the relative weights of each contribution to Te. We have shown
that the contribution due to the passage through the escape
window (which had been ignored in the majority of earlier
works) dominates the global MFET in the narrow escape limit,
since it exhibits a stronger singularity as e - 0 than the
contribution due to the diffusive search. This implies that
the kinetics of the narrow escape process is rather barrier-
controlled than diffusion-controlled. As a consequence, discarding
an entropy or an energy barrier at the exit from the micro-domain
can result in strongly misleading estimates in chemical and
biological applications. Remarkably, the associated reactivity
(or permeability) enters into the global MFET in a very simple way.

Further on, for the case of radially-symmetric interaction
potentials which possess a bounded first derivative, we have
presented an explicit expression for the contribution to Te due
to the diffusive search for the location of the escape window, in
which the coefficients in front of the terms diverging in the
limit e - 0 were defined via some integrals and derivatives of

the interaction potential. The structure of the obtained result
suggests that most likely the general problem considered here
can be solved exactly in the narrow escape limit without resorting
to any approximation.

As an example of a triangular-well interaction potential,
we have discussed the dependence of the contribution to the
MFET due to a diffusive search for the escape window on the
parameters of the potential. We have shown that this contribu-
tion is always a monotonic function of the value of the potential
at the boundary: as expected, repulsive (resp., attractive) inter-
actions increase (resp., decrease) the MFET. Curiously enough,
it appeared that for attractive interactions Te is a non-
monotonic function of the extent of the potential: there exists
some optimal extent for which Te has a minimum. This optimal
value corresponds to interactions which are neither localised
near the confining boundary nor extend too deeply into the
bulk. In the case of a very small extent (i.e., in the limit of short-
range interactions), with a fixed value of the interaction
potential on the boundary, the force acting on the particle
in the immediate vicinity of the boundary becomes very large
and the narrow escape process proceeds precisely via the
Adam–Delbrück dimensionality reduction scenario: a particle
first reaches the boundary at any point and then, not being able
to surmount the barrier against desorption, continues a diffusive
search for the escape window along the boundary until it finds it.
For more realistic moderate values of the extent, typical paths
consist of alternating, intermittent bulk diffusion tours followed
by diffusion along the boundary.
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