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Revealing nonergodic dynamics in living cells from a single particle trajectory
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We propose the improved ergodicity and mixing estimators to identify nonergodic dynamics from a single
particle trajectory. The estimators are based on the time-averaged characteristic function of the increments and can
thus capture additional information on the process as compared to the conventional time-averaged mean-square
displacement. The estimators are first investigated and validated for several models of anomalous diffusion, such
as ergodic fractional Brownian motion and diffusion on percolating clusters, and nonergodic continuous-time
random walks and scaled Brownian motion. The estimators are then applied to two sets of earlier published
trajectories of mRNA molecules inside live Escherichia coli cells and of Kv2.1 potassium channels in the plasma
membrane. These statistical tests did not reveal nonergodic features in the former set, while some trajectories of
the latter set could be classified as nonergodic. Time averages along such trajectories are thus not representative
and may be strongly misleading. Since the estimators do not rely on ensemble averages, the nonergodic features
can be revealed separately for each trajectory, providing a more flexible and reliable analysis of single-particle
tracking experiments in microbiology.
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I. INTRODUCTION

Statistical analysis of a single random realization of an un-
known stochastic process has become indispensable in various
fields, from geosciences to microbiology and finances. In these
fields, multiple realizations of a process are either impossible
due to the nonrepeatable unique character of observations (e.g.,
earth vibrations or stock prices), or undesirable due to spatial
heterogeneity or time evolution of the medium (e.g., motion
inside living cells). One therefore needs to resort to single
observations to construct a mathematical or physical model of
the unknown process, while the model calibration has to rely on
the (implicit) ergodicity assumption to interchange ensemble
and time averages. However, the ergodicity can fail in active
or aging systems such as living cells [1–3], viscoelastic media
[4], or blinking nanocrystals [5–7]. A finite length of acquired
trajectories and randomness of estimators make challenging
verifications of ergodicity in single-particle tracking (SPT)
experimental data. At the same time, this is a necessary step
toward reliable biophysical interpretations: if the ergodicity
breaking remains undetected, any conclusion based on time
averages along a single trajectory may be strongly misleading.

The ergodicity breaking has been thoroughly investi-
gated for various processes, including anomalous diffusions
(see Refs. [8–10] and references therein). In particular,
the Khinchin’s theorem relates ergodicity to the long-time
vanishing of the velocity autocorrelation function (VAF) of
a stationary process [11–13]. The ergodicity breaking (EB)
parameter that characterizes the normalized variance of the
time-averaged mean-squared displacement (TAMSD), was
introduced to quantify deviations from ergodicity in numerous
models of anomalous diffusion [8,9]. Since both the VAF and
the EB parameter rely on ensemble averages, many trajectories
are needed to reveal ergodicity breaking.

Magdziarz and Weron proposed ergodicity and mixing
estimators based on a single particle trajectory [14]. For
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a discrete process Y (n), representing the increments of a
trajectory X(n), Y (n) = X(n + 1) − X(n), they introduced the
functional

E(n) ≡ 〈exp{i[Y (n) − Y (0)]}〉 − |〈exp[iY (0)]〉|2, (1)

where 〈. . .〉 denotes the ensemble average. This functional
fully characterizes the mixing and ergodic properties of
stationary infinitely divisible (SID) processes: a SID process
is mixing (respectively, ergodic) if and only if E(n) → 0
(respectively, of n−1 ∑n−1

k=0 E(k) → 0) as n → ∞ (note that
mixing implies ergodicity). The mixing and ergodicity esti-
mators were then obtained by replacing the ensemble average
in Eq. (1) by the time average along a single trajectory with
N + 1 increments Y (0),Y (1), . . . ,Y (N ):

Ê(n) ≡ 1

N − n + 1

N−n∑
k=0

ei[Y (k+n)−Y (k)] −
∣∣∣∣∣

N∑
k=0

eiY (k)

N + 1

∣∣∣∣∣
2

. (2)

The smallness of Ê(n) (respectively, of n−1 ∑n−1
k=0 Ê(k)) for

large n is the necessary condition for mixing (respectively,
ergodicity), whereas violation of this condition reveals the
mixing (respectively, ergodicity) breaking. We emphasize that
the estimators based on a single trajectory allow one to
reject, with some degree of certainty, the mixing or ergodicity
hypothesis but they cannot affirm it. For instance, the smallness
of the estimator Ê(n) does not imply mixing.

Several important issues need to be resolved for reliable
ergodicity assessing: (i) the smallness of the estimators needs
to be quantified (e.g., by comparing the mean estimator to its
standard deviation or by determining the confidence intervals,
see Ref. [15]); (ii) the impact of a finite trajectory length due
to which the estimators can be relatively large even for mixing
and ergodic processes, should be reduced and controlled; (iii)
a small bias to which the original estimators converge as n

increases has to be corrected; and (iv) the failure to identify
the nonergodic continuous time random walk (CTRW) as
nonergodic should be amended. This last point was the major
motivation for our work because macromolecular crowding
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strongly affects the intracellular and membrane transport
[16–18] and can yield nonergodic features which are often
modeled by nonstationary CTRW [2,4]. As a consequence, a
reliable analysis of single-particle tracking in living cells urges
for developing statistical tests to identify single trajectories
for which time averages are not representative, either due to
ergodicity breaking, or nonstationarity of the process.

The paper is organized as follows. In Sec. II, we present
the main results: the improved estimators, their validation for
anomalous diffusion models, and application to experimental
data. To make this section more accessible to a broad
readership, most theoretical and technical details have been
moved to the discussion in Sec. III and the Appendices. In
Sec. IV, we summarize the main findings and conclude.

II. RESULTS

A. Improved estimators

In this paper, we resolve the above issues by modifying the
mixing estimator as

Êω(n,N ) ≡ 1

N − n + 1

N−n∑
k=0

eiω[X(k+n)−X(k)]

− 1

N (N + 1)

∣∣∣∣∣
N∑

k=0

eiω[X(k)−X(0)]

∣∣∣∣∣
2

+ 1

N
. (3)

The first term can be interpreted as the time-averaged charac-
teristic function of the increment X(k + n) − X(k) at lag time
n, while the second term ensures that the estimator is strictly
0 for a constant process X(n) = X0 (in addition, the mean
estimator is strictly 0 for a process with independent X(n)).
The ergodicity estimator generalizes to

F̂ω(n,N ) ≡ 1

n

n∑
k=1

Êω(k,N ), (4)

where the summation over k was shifted from the original
range 0, . . . ,n − 1 for convenience.

There are three modifications with respect to the original
estimators: (i) we consider all Fourier modes, not only
ω = 1, (ii) we partly remove the bias by subtracting the
constant term from the second sum and changing accordingly
the normalization, and (iii) most importantly, we apply the
estimators to the long-time increments (or positions) of a
trajectory, not to the short-time increments (or velocities); see
further discussion in Sec. III A. Note that each coordinate of a
two- or three-dimensional trajectory is considered separately,
i.e., X(n) is restricted to be a one-dimensional process.
Formally, the inclusion of the frequency ω can be seen as
rescaling of the process [54]. While such a rescaling does not
change the mixing or ergodic property of the process and is
thus redundant in the limit n → ∞, high-frequency modes
with large ω become important for a finite-length trajectory.
Even though the changes between Eqs. (2) and (3) are minor,
the application of the improved estimators to the positions of a
tracer is the key feature. Rederiving the properties of the new
estimators from scratch, we manage to reveal the nonergodic
character of both model and experimental diffusive processes
from a single trajectory.

B. Theoretical results for anomalous diffusion models

To investigate the improved mixing and ergodicity esti-
mators (3) and (4), we consider several models of anomalous
diffusion: fractional Brownian motion (fBm) [19,20], diffusion
on percolating clusters [21], CTRW [22,23], and scaled
Brownian motion (sBm) [24,25]. The first two processes are
ergodic while the last two are not (note that the sBm exhibits
the “mild nonergodicity,” for which the EB parameter vanishes
with the increasing trajectory length [24,25]). We also consider
CTRW with exponential cutoff, which exhibits nonergodic
features at short times and becomes ergodic at longer times.
Finally, we will test geometric Brownian motion (gBm), which
was reported to be nonergodic [26].

The fBm at discrete time steps is a centered Gaussian
process with 〈[X(k + n) − X(k)]2〉 = σ 2n2H , where σ 2 is the
variance of one-step displacement, and 0 < H < 1 is the Hurst
exponent. Using the identity

〈eiω[X(k+n)−X(k)]〉 = e− 1
2 ω2〈[X(k+n)−X(k)]2〉, (5)

which is valid for any discrete centered Gaussian process, we
compute

〈Êω(n,N )〉 = qn2H − 2
N∑

k=1

N + 1 − k

N (N + 1)
qk2H

, (6)

〈F̂ω(n,N )〉 = 1

n

n∑
k=1

qk2H− 2
N∑

k=1

N + 1 − k

N (N + 1)
qk2H

, (7)

where q = e−ω2σ 2/2. For Brownian motion (H = 1/2), one
gets explicitly

〈Êω(n,N )〉 = qn −
2q

(
1 − 1−qN+1

(N+1)(1−q)

)
N (1 − q)

, (8)

〈F̂ω(n,N )〉 = q
1 − qn

n(1 − q)
−

2q
(
1 − 1−qN+1

(N+1)(1−q)

)
N (1 − q)

. (9)

Both 〈Êω(n,N )〉 and 〈F̂ω(n,N )〉 monotonously decrease with
n and approach to the limit given by the second term,
but the decrease of the mean ergodicity estimator is much
slower (as 1/n). For both estimators, the second term presents
the bias, which vanishes as either N → ∞ or ω → ∞.
While the trajectory length N is fixed by experimental setup,
the frequency ω of the estimator can be increased at will.
Note that the mean of the original estimator Eq. (2) contains
the term −1/(N + 1), which could not be removed by
varying ω.

For fixed n and N , the mean mixing estimator 〈Êω(n,N )〉
from Eq. (8) as a function of ω exhibits nonmonotonous
behavior. When n � N and N � 1, the estimator can be
approximated as qn − 2

N(1−q) that reaches the maximum at

σωc 	 (8/(nN ))1/4. As a consequence, the estimator with
ω = 1 would classify Brownian motion with σ � (8/N)1/4

as a nonergodic process. This finite-length effect can be
eliminated by varying the frequency ω (see Sec. III B).

The variance of the mixing estimator,

var{Êω(n,N )} = 〈|Êω(n,N )|2〉 − |〈Êω(n,N )〉|2, (10)
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is dominated by the first term in Eq. (3), which at large σω

becomes (Appendix A)

var{Ê∞(n,N )} 	 1

N − n + 1
. (11)

As expected, the variance is of the order of 1/N for small n but
progressively grows up to 1 at n = N . In turn, the variance of
the ergodicity estimator is much smaller, as can be seen from
its large ω asymptotic limit (Appendix A),

var{F̂∞(n,N )} 	 1

n2

n∑
k=1

1

N − k + 1
. (12)

When 1 � n � N , the sum can be approximated as
ln[N/(N − n + 1)] 	 n/N , i.e., the variance decreases with n

as 1/(nN ), in contrast to the increasing variance of the mixing
estimator in Eq. (11). In other words, summing contributions
from different lag times greatly reduces fluctuations so that the
ergodicity estimator applied to a single trajectory yields less
noisy results.

We now turn to CTRW for which long stalling periods
between successive jumps lead to the nonergodic behavior [27]
(see also Ref. [9] and references therein). Using the renewal
technique (Appendix B), we derive the exact expressions for
the mean mixing and ergodicity estimators. In the limit of large
ω, they do not vanish but converge to nontrivial limits:

〈Ê∞(n,N )〉 	 α − 1 + sin(πα)

πα(1 + α)
(1 − n/N )α

× 2F1(α,α + 1; α + 2; 1 − n/N ), (13)

〈F̂∞(n,N )〉 	 α − 1 + sin(πα)

πα(1 + α)

N

n

×
∫ 1

1−n/N

dxxα
2F1(α,α + 1; α + 2; x), (14)

where 0 < α < 1 is the scaling exponent of CTRW, and
2F1(a,b; c; z) is the hypergeometric function. These expres-
sions present one of the main analytical results of the paper.
The estimators do not vanish even for infinitely long tra-
jectories: 〈Ê∞(n,∞)〉 = 〈F̂∞(n,∞)〉 = α, independently of
n. In sharp contrast to ergodic processes, the mean mixing
estimator decreases from α to α − 1 when n varies from 0
to N [Fig. 1(a)]. The longer the trajectory (larger N ), the
closer the numerical curves to the limiting Eqs. (13) and (14).
Figures 1(b) and 1(d) show the standard deviations of both
estimators that weakly depend on the trajectory length N ,
in contrast to Eq. (10) for discrete Gaussian processes. As a
consequence, increasing N does not improve the estimation
quality in the case of nonergodic CTRW.

C. Measurement noise and practical issues

Since both estimators vanish in the limit ω → ∞ for mixing
and ergodic processes but remain nonzero for nonergodic
CTRW, the estimation at very large ω might be thought as
optimal. However, this strategy is not convenient in practice
because of measurement artifacts such as localization errors,
blurring, or electronic noises [28,29]. To account for some of
these effects, the intrinsic trajectory X(t) can be superimposed
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FIG. 1. The mean (a, c) and standard deviation (b, d) of the mixing
(a, b) and ergodicity (c, d) estimators at ω = 10 as a function of
n/N for CTRW with α = 0.7, σ = 1, and three trajectory lengths
N = 100,1000,10 000 (symbols). For comparison, solid line shows
the theoretical limits (13) and (14) of the mean estimators for CTRW
and the standard deviation for Brownian motion (given by square
roots of Eqs. (11) and (12) with N = 100).

with a measurement noise ε(t): X̃(t) = X(t) + ε(t). If ε(t) is
a white Gaussian noise independent of the tracer’s dynamics
X(t), two contributions are factored out:

〈eiω[X̃(n+k)−X̃(k)]〉 = 〈eiω[X(n+k)−X(k)]〉e−σ 2
ε ω2

, (15)

where the second factor is the average over the white noise of
variance σ 2

ε (when the measurement noise is not Gaussian, its
effect onto the estimators can be different and needs further
analysis). Even if the intrinsic dynamics is not mixing or
ergodic, both estimators will be strongly attenuated in the
limit of large ω by the second factor coming from the ergodic
white noise. This is illustrated on Fig. 2, which shows the mean
mixing estimator as a function of frequency ω for a CTRW
corrupted by white Gaussian noise with different σε. When
there is no noise (σε = 0), the mean estimator rapidly saturates
on a plateau, in agreement with the above theoretical analysis.
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FIG. 2. The mean mixing estimator 〈Êω(1,1000)〉 as a function
of ω for CTRW with α = 0.7 and σ = 1, and four levels of white
Gaussian noise: σε = 0 (circles) and σε = 0.01, 0.1, 1 (lines). Note
that the plateau at 0.6 is smaller than the value α = 0.7 expected from
Eq. (13) because of the finite length effect (N = 1000).
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In turn, the presence of noise attenuates the estimator. This
effect is not yet seen at σε = 0.01 because the factor e−ω2σ 2

ε

remains close to 1 for the considered range of ω, but it is
clearly seen for σε = 0.1 and σε = 1.

To limit this noise-induced attenuation, the rule of thumb
consists in keeping ωσ of the order of 1, σ being the
empirical standard deviation of increments. In practice, one
can renormalize the trajectory by σ and then consider ω

between 1 and 3. On one hand, this renormalization helps to
eliminate false nonergodicity identifications due to too small
σ . On the other hand, if the noise level σε is much smaller than
σ , the condition ωσ ∼ 1 ensures that the estimator is not much
attenuated due to noise (i.e., the factor e−σ 2

ε ω2
remains close

to 1). At the same time, one can construct counterexamples
for which this normalization is not enough. For instance, the
trajectory concatenating two Brownian motions with different
diffusion coefficients can be made appearing as nonergodic
(Appendix C). Extending this construction to diffusion in a
heterogeneous medium consisting of regions of random sizes
and random diffusivities, one can produce a truly nonergodic
process under simple assumptions on the distribution of the
sizes and diffusivities [30,31].

D. Validation on anomalous diffusion models

In order to validate the proposed statistical tool, we apply
the mixing and ergodicity estimators to four single trajectories
generated according to four anomalous diffusion models with
the same exponent α = 2H = 0.7: fBm, CTRW, sBm, and
diffusion on percolating cluster (in the last case, the exponent
is random and distributed around 0.7 due to the random
shape of percolating clusters; see Appendix D for details).
Each trajectory is generated with the same one-step variance
σ 2 = 1. To render the comparison closer to the experimental
situation, all trajectories were corrupted by white Gaussian
noise with standard deviation σε = 0.2. Figure 3 shows four
simulated trajectories and the corresponding curves of the
mixing and ergodicity estimators. One can clearly distinguish
the nonmixing feature of a CTRW trajectory even from
noisy curves of the mixing estimator. These curves allow
one to reject the mixing hypothesis with a high degree of
certainty. Similarly, the nonergodic behavior is seen from the
ergodicity estimator. In turn, the estimator curves for three
other trajectories vanish as n increases so that the mixing
and ergodicity hypotheses cannot be rejected. However, it
does not imply mixing or ergodicity for these models. This
is well illustrated by the scaled Brownian motion which is not
ergodic, although its ergodicity estimator vanishes with n. The
“mild nonergodicity” of this process is not detected by both
estimators due to a relatively short trajectory length. This is
not surprising because the one-step standard deviation varies
from 1 at n = 1 to 500(α−1)/2 ≈ 0.4 at n = 500. To detect the
nonergodic behavior of this model, one needs higher variations
and thus much longer trajectories.

To illustrate the statistical variability of estimators, we
repeat the same analysis for ten simulated trajectories for
each model. Note that Janczura and Weron have managed to
reveal the ergodic property of fBm from empirical ensemble
averages over many trajectories (the smallest analyzed sample
containing ten trajectories) [15]. Here, we aim at probing
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FIG. 3. (Top) Examples of trajectories of four anomalous diffu-
sion models: fBm, CTRW, diffusion on percolating clusters, and sBm,
with the same scaling exponent α = 0.7 and one-step size σ = 1.
Each trajectory was corrupted by the white Gaussian noise of level
σε = 0.2 and then renormalized by the empirical standard deviation
of its increments. (Bottom) The real part of the mixing and ergodicity
estimators at ω = 2 applied to these four trajectories.

nonergodicity individually for each single trajectory. Figure 4
shows the results for the mixing estimator (only for fBm and
CTRW), while the ergodicity estimator is illustrated in Fig. 5.
Both estimators allow one to clearly identify the nonergodic
character of CTRW from a single trajectory, even for the
trajectory length as small as N = 500. Since the ergodicity
estimator yields much smoother curves, it is more appropriate
for the analysis of single-particle tracking experiments (note
that although mixing and ergodicity are not equivalent, they
are satisfied or violated simultaneously in many diffusive
processes).
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FIG. 4. The real part of the mixing estimator at ω = 2 for ten
simulated trajectories from two anomalous diffusion models: ergodic
fBm with 2H = 0.7 (a) and nonergodic CTRW with the same
exponent α = 0.7 (b) (in both cases, we set σ = 1 and N = 500). All
trajectories were corrupted by white Gaussian noise with standard
deviation σε = 0.1. Each trajectory is renormalized by the empirical
standard deviation of its increments. Light-gray shadowed region
delimits the typical range of fluctuations for Brownian motion, i.e.,
the mean plus and minus the standard deviation.
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FIG. 5. The real part of the ergodicity estimator at ω = 2 for ten
simulated trajectories from four anomalous diffusion models with
the same exponent α = 2H = 0.7: fBm (a), CTRW (b), diffusion on
percolating cluster (c), and sBm (d) (in all cases, we set σ = 1 and
N = 500). All trajectories were corrupted by white Gaussian noise
with standard deviation σε = 0.1. Each trajectory was renormalized
by the empirical standard deviation of its increments.
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FIG. 6. The real part of the mixing (a) and ergodicity (b)
estimators at ω = 2 as a function of n for two experimental trajectories
of around N = 1500 points: the motion of mRNA molecule inside live
E. coli cell [33] and Kv2.1 potassium channel anomalous dynamics
in the plasma membrane [1]. Both trajectories (shown in insets) were
renormalized by the empirical standard deviation of their increments.
Light-gray shadowed region delimits the typical range of fluctuations
of estimators for Brownian motion, i.e., the mean plus and minus the
standard deviation.

In addition, both estimators were also successfully tested on
CTRW with exponential cutoff, which allows one to “switch”
between ergodic and nonergodic behavior (Appendix D 3), and
on the nonergodic geometric Brownian motion (Appendix D 4)
that plays a major role in finances [26,32].

E. Application to experimental data

Now, we apply both estimators to two samples of ex-
perimental trajectories: (i) mRNA molecules inside live Es-
cherichia coli cells [33], and (ii) Kv2.1 potassium channels in
the plasma membrane [1]. Figure 6(a) shows that the mixing
estimator applied to a trajectory of mRNA molecule (dashed
line) rapidly decreases with n and then fluctuates around 0
within the typical range of fluctuations for Brownian motion.
In other words, this test does not reveal nonmixing behavior,
in agreement with conclusion of Ref. [14]. Similarly, the
ergodicity estimator in Fig. 6(b) rapidly vanishes at large n,
as expected for ergodic dynamics. However, many trajectories
are needed to confirm that the dynamics is indeed mixing
or ergodic (see further discussion in Sec. IV). In turn, both
mixing and ergodicity estimators for a trajectory of the Kv2.1
potassium channel (solid line) lie outside the typical range
and do not vanish as n increases. This is a signature of the
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FIG. 7. The real part of the ergodicity estimator at ω = 2 for
ten experimental trajectories of two samples: the motion of mRNA
molecules inside live E. coli cells [33] and Kv2.1 potassium channel
anomalous dynamics in the plasma membrane [1]. Each trajectory is
renormalized by the empirical standard deviation of its increments.
The trajectory length ranges between 400 and 500 points for the first
set and around 1500 points for the second set. Light-gray shadowed
region delimits the typical range of fluctuations for Brownian motion,
i.e., the mean plus and minus the standard deviation.

nonmixing and nonergodic behavior, in agreement with the
conclusion of Weigel et al. based on the analysis of ensemble
averages over multiple trajectories [1].

We also applied both estimators to the trajectories of
optically trapped (sub)micron-sized beads in living cells and
actin solutions [34,35]. These tests (not shown) did not reveal
nonergodic behavior, as expected for a harmonically trapped
particle.

The important advantage of these single-particle estimators
is the possibility to probe nonergodicity for each trajectory.
Figure 7 shows the real part of the ergodicity estimator at
ω = 2 for ten experimental trajectories from two samples: the
motion of mRNA molecules inside live E. coli cells [33] and
Kv2.1 potassium channel anomalous dynamics in the plasma
membrane [1]. One can see that the dispersion of the estimator
curves is higher for the Kv2.1 potassium channel, in particular,
several trajectories can be classified as nonergodic. As a
consequence, the ergodicity estimator allows one to reject, with
some degree of certainty, the ergodicity hypothesis. Weigel
et al. identified transient binding to the actin cytoskeleton as a
plausible biophysical origin of nonergodicity in this dynamics.
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FIG. 8. The real parts of the mixing (a) and ergodicity (b)
estimators at ω = 1 applied to the increments of a single CTRW
trajectory (dashed line) and to the positions of the same trajectory
(solid line), with N = 1000, α = 0.7, and σ = 1. In both cases,
X(n) are renormalized by the empirical standard deviation of the
increments. Thin dash-dotted line presents the mean estimators from
Eqs. (13) and (14).

In turn, the estimator curves for mRNA molecule trajectories
are less dispersed and vanish as n grows, showing no evidence
for nonergodic behavior.

It is also instructive to compare Fig. 7 to Fig. 5 for
simulated trajectories. One can see that the ergodicity estimator
curves for both experimental samples behave somewhat in
between those for fBm and CTRW. In fact, their disper-
sion is larger than that for fBm but smaller than that for
CTRW.

III. DISCUSSION

A. Positions versus increments

The forms of both mixing and ergodicity estimators
originate from the analysis of stationary infinitely divisible
(SID) processes by Magdziarz and Weron [14]. For instance,
the mixing estimator aims at testing whether two increments
Y (k + n) and Y (k) become asymptotically independent as n

increases. However, the use of these short-time increments (or
velocities) may be inconvenient for the analysis of anomalous
intracellular transport because the most common nonergodic
model of anomalous diffusion, the CTRW, cannot be classified
as nonergodic since most of its increments are zero. Figure 8
illustrates this problem by comparing the increments-based
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method (as originally proposed by Magdziarz and Weron) and
the positions-based method (that we employ in this paper). For
this purpose, we first apply the mixing and ergodicity estima-
tors to the increments of a single CTRW trajectory, {X(1) −
X(0),X(2) − X(1), . . . ,X(N ) − X(N − 1)}, and then to the
positions of the same trajectory, {X(0),X(1), . . . ,X(N )} (note
that the improved estimators operate with long-time incre-
ments, namely, X(k + n) − X(k) and X(k) − X(0) stand in
Eq. (3)). As expected, both original estimators applied to
the short-time increments are very close to 0, which does
not allow one to reveal its nonergodic character. In turn, the
estimators applied to the positions of the same CTRW reveal
its nonergodicity and nonmixing behavior. It is worth noting
that the two methods can both work well (correctly identifying
CTRW trajectories as nonergodic) or both fail (missing such
identifications). This is related to the high sensitivity of the
estimators to the presence of long stalling periods in a finite
length trajectory. However, the use of the positions-based
estimators results in statistically more reliable identifications
of CTRW as nonergodic.

While we kept essentially the same form of both mixing
and ergodicity estimators, their application to the positions
of a trajectory has changed the theoretical paradigm. In
particular, the improved mixing estimator probes now the
asymptotic independence of the positions X(k + n) and X(k)
or, equivalently, of the long-time increments X(k + n) − X(0)
and X(k) − X(0) at different lag times. Alternatively, this
estimator can be seen as the time averaged characteristic
function of the increment X(k + n) − X(k) at lag time n.
In other words, the key modification consists in looking at
the long-time increments instead of short-time ones [such as
X(k + 1) − X(k)]. To some extent, the difference between
the increments-based and the positions-based estimators re-
sembles the difference in estimation of the velocity auto-
correlation function and the mean-square displacement, the
latter being less noisy and thus more robust and easier to
estimate.

To further illustrate the difference between two methods, we
plot in Fig. 9 the real part of the original ergodicity estimator
[14] applied to the increments of ten experimental trajectories
of mRNA molecules and of Kv2.1 potassium channels [55].
Given that the mRNA and Kv2.1 trajectories were recorded
in different length units, the increments of each trajectory
were renormalized by their standard deviation. Following
Ref. [14], only the first 200 lag times are plotted. One can
see that the original estimators look very similar for two sets
of experimental data, suggesting the ergodic behavior in both
cases. In contrast, our improved estimator reveals more distinct
behavior in two samples (Fig. 7).

B. Role of the frequency

The introduction of variable frequency ω is important
to avoid wrong identifications of nonmixing or nonergodic
behavior due to deviations of the mixing or ergodicity
estimators from 0. This problem can be relevant for both
the original increments-based method and our positions-based
method. In order to illustrate this point, we consider two
examples: fractional Gaussian noise (fGn) and Brownian
motion.
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FIG. 9. The real part of the original ergodicity estimator,
Re{n−1

∑n−1
k=0 Ê(k)} from Ref. [14], applied to ten experimental

trajectories of two samples: (a) the motion of mRNA molecules inside
live E. coli cells [33] and (b) Kv2.1 potassium channel anomalous
dynamics in the plasma membrane [1]. The estimator is applied to
the increments of each trajectory, which are renormalized by their
empirical standard deviation. The trajectory length ranges between
400 and 500 points for the first set and around 1500 points for the
second set.

If X(n) are centered stationary Gaussian increments defined
by a covariance function 〈X(k1)X(k2)〉 = γ (|k1 − k2|), the
mean mixing and ergodicity estimators read

〈Êω(n,N )〉 = e−ω2η(n) − 2
N∑

k=1

N − k + 1

N (N + 1)
e−ω2η(k),

〈F̂ω(n,N )〉 = 1

n

n∑
k=1

e−ω2η(k) − 2
N∑

k=1

N − k + 1

N (N + 1)
e−ω2η(k),

where η(n) = γ (0) − γ (n). For instance, if X(n) are the
increments of fractional Brownian motion (the so-called
fractional Gaussian noise), one has

γ (n) = σ 2

2
[|n − 1|2H + (n + 1)2H − 2n2H ]. (16)

For H = 1/2, one retrieves the discrete white noise with
γ (n) = σ 2δn,0 that implies 〈Êω(n,N )〉 = 〈F̂ω(n,N )〉 = 0.
More generally, both mean estimators are strictly zero for
independent X(n).

In turn, for correlated increments, the original estimators at
ω = 1 can deviate from 0 even for ergodic processes. Figure 10

052146-7
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FIG. 10. The real part of the ergodicity estimator as a function of
n for a single fGn trajectory with N = 500, H = 0.9, and σ = 1. At
ω = 1 (solid line), the estimator deviates from zero that may wrongly
suggest nonergodic behavior. Increasing ω, one can eliminate this
false conclusion.

shows the real part of the ergodicity estimator for a single
realization of ergodic fGn. At ω = 1, the estimator deviates
from zero that may wrongly be interpreted as nonergodic
behavior. Increasing the frequency ω allows one to re-establish
the vanishing behavior of the estimator and thus to avoid such
false conclusions. While the deviations are relatively small for
the considered case of fGn (and are even smaller for other
choices of H and σ ), they could be stronger for some other
ergodic processes. In general, the frequency ω is needed to
control the amplitude of increments.

The effect of amplitude can be much more important when
the estimators are applied to the positions of a trajectory instead
of its increments. In particular, even Brownian motion can be
falsely identified as nonergodic if the diffusion coefficient is
small. This statement is illustrated on Fig. 11, which shows the
mean mixing and ergodicity estimators as well as the real part
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FIG. 11. The mean mixing (a) and ergodicity (c) estimators as a
function of n for a Brownian motion trajectory with N = 1000 and
σ 2 = 0.04. At ω = 1 (solid line), both estimators are not small that
may wrongly suggest nonmixing or nonergodic behavior. Increasing
ω, one can eliminate this false conclusion. The same conclusions
can be made from the real part of the mixing (b) and ergodicity (d)
estimators for a single Brownian motion trajectory with the same
parameters.

of both estimators for a single Brownian motion trajectory
with N = 1000 and σ 2 = 0.04. Distinct deviations from 0
are clearly seen at ω = 1. This is a finite-length effect that
would disappear for a much longer trajectory. For a fixed N ,
this false conclusion can be removed by increasing ω, which
is equivalent to rescaling the variance σ 2. In practice, we
suggest renormalizing the trajectory by the empirical standard
deviation of its increments, in which case the frequency ω can
be kept in the order of 1.

C. Impact of outliers

In addition to noise, experimental data can contain “out-
liers,” i.e., singular erroneous points coming from instrumental
or software failures, data recording or transmission problems,
or human factors. The problem of outliers is particularly
relevant for financial data [36]. These erroneous points whose
statistical properties strongly deviate from the remaining
“normal” points, may appear as nonergodic features in the
analysis of a single finite length trajectory by means of the mix-
ing and ergodicity estimators. In order to illustrate the potential
impact of outliers, we generate a Brownian trajectory with
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FIG. 12. The real part of the mixing (a) and ergodicity (b)
estimators at ω = 1 as a function of n for an original Brownian
motion trajectory with N = 1000 and σ = 1 (solid line) and for the
same trajectory corrupted by resetting ten randomly chosen points to
0 (dashed line). In both cases, the trajectory was renormalized by the
empirical standard deviation of its increments. Light-gray shadowed
region delimits the mean plus and minus the standard deviation of
each estimator computed for Brownian motion according to Eqs. (8),
(9), and (11).
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N = 1000 steps and then reset 10 randomly chosen points of
this trajectory to 0. This procedure results in 20 increments
of anomalously large amplitude (as compared to the other
increments). While only 1% of data points are assigned
as outliers, both mixing and ergodicity estimators suggest
nonmixing and nonergodic behavior, as illustrated on Fig. 12.

D. Discrete displacements

Digital acquisition systems or lattice models can produce
discretely spaced positions of experimental or simulated
trajectories, resulting in a periodic (nonvanishing) behavior of
both estimators as functions of the frequency ω. To illustrate
this “artifact,” we consider the one-dimensional projection
of a d-dimensional random walk in which X(n) is the sum
of independent random variables χk taking the values ±σ

with probability 1/(2d), or 0 with probability 1 − 1/d. For
this process, 〈eiω(X(n+k)−X(k))〉 = [φ(ω)]n, where φ(ω) is the
characteristic function of χk: φ(ω) = 1 − (1 − cos(ωσ ))/d.
The mean mixing and ergodicity estimators are still given by
Eqs. (8) and (9), with q = φ(ω). One can see that both mean
estimators are 2π -periodic functions of ωσ . As a consequence,
too large values of ωσ do not improve the quality of estimation.
Moreover, the estimators would lead to false nonmixing or
nonergodicity identifications at the values ωσ = 2πm (with an
integer m), at which q = 1. In turn, there is an optimal value
minimizing q, which corresponds to ωσ = π/2 	 1.57 for
this model. Note that if the trajectory was renormalized by the
standard deviation of its increments, σ/

√
d , the characteristic

function would be φ(ω) = 1 − (1 − cos(ω/
√

d))/d, and the
optimal value would be ω = √

dπ/2. Since the underlying
model is not known for experimental data, the rule of thumb
consists in analyzing the estimators for several values of ω in
the range between 1 and 3.

IV. CONCLUSIONS

In summary, we proposed, investigated, and validated the
improved mixing and ergodicity estimators based on long-
time increments (or positions) of a single trajectory. Aiming
applications to experimental trajectories, which a priori are
neither stationary nor infinitely divisible, we extended the
range of applicability of the estimators beyond SID processes.
The new estimators rely on the time-averaged characteristic
function of the increments that can bring complementary
information as compared to the time-averaged MSD or VAF,
especially for non-Gaussian processes. We showed that the
ergodicity estimator vanishes for basic ergodic models of
anomalous diffusion (fBm, diffusion on fractals) and remains
nonzero for nonergodic models (CTRW, geometric Brownian
motion). The significant advantage of the present method is
that nonmixing or nonergodic behavior can be revealed from
a single trajectory, with no need in ensemble averages over
many trajectories that may be difficult or even impossible to
collect.

As discussed by Magdziarz and Weron [14], the smallness
of the estimators is the necessary but not sufficient condition
for mixing and ergodicity. In other words, these statistical tests
can reveal nonmixing or nonergodic properties from a single
trajectory but many trajectories are needed to confirm mixing

or ergodicity. For instance, a constant process X(n) = x0 with
a random initial position x0 is not ergodic, and this property
cannot in principle be revealed from a single trajectory. In
particular, the mixing and ergodicity estimators are strictly
zero for this process but their smallness is not a signature
of ergodicity but rather a failure in detecting nonergodicity.
The scaled Brownian motion is another example of such
a failure. In general, the finite trajectory length and the
randomness of the estimators based on a single trajectory
remain the major challenges for inference problems that aim at
characterizing an unknown stochastic process from its single
random realization. Deviations of the estimators from 0 can
be either a signature of nonmixing or nonergodic behavior,
or a sign of nonstationary dynamics, or a consequence of too
short trajectory, or a measurement artifact (e.g., the presence
of outliers; see Sec. III C), or a specific feature of the process
(e.g., discrete displacements; see Sec. III D).

While probing nonergodicity of an unknown stochastic
process from a single finite length trajectory remains debatable
from the mathematical point of view, the ergodicity and mixing
estimators answer the important practical question whether
the time average along a single trajectory is representative
or not. If the estimators do not vanish with the lag time
n, conclusions based on time averages can be strongly
misleading. In particular, large values of the estimators indicate
on peculiar properties of the stochastic process that should
warn scientists against a blind use of time averages. Along
with other single-particle methods [9,37–48], the mixing and
ergodicity estimators provide a powerful statistical tool for a
more reliable interpretation of SPT experiments.

An important perspective of this work consists in for-
mulating nonergodicity and nonmixing test statistics (that
can be converted to an estimated yes or no answer) and in
quantifying their properties (p values, confidence intervals,
etc.). For this purpose, the probability distribution of the
estimators need to be investigated for various stochastic
processes. In addition, the role of small sample statistics can
be analyzed for the improved estimators (see Ref. [15] for
details).
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APPENDIX A: VARIANCE OF THE ESTIMATORS

For a discrete centered Gaussian process, the variance
Eq. (10) of the mixing estimator can be formally expressed
in terms of the covariance matrix, with

〈Êω(n,N )〉 = 1

N − n + 1

N−n∑
k=0

Ck+n,k,0,0

− 1

N (N + 1)

N∑
k1 =k2=0

Ck1,k2,0,0 (A1)
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and

〈|Êω(n,N )|2〉

= 1

(N − n + 1)2

N−n∑
k,k′=0

Ck+n,k,k′+n,k′

− 2

(N − n + 1)N (N + 1)

N−n∑
k=0

N∑
k1 =k2=0

Ck+n,k,k1,k2

+ 1

N2(N + 1)2

N∑
k1 =k2,k3 =k4

Ck1,k2,k3,k4 , (A2)

where

Ck1,k2,k3,k4 = e− 1
2 ω2〈(X(k1)−X(k2)−X(k3)+X(k4))2〉 (A3)

includes the elements of the covariance matrix. Even for
Brownian motion, the combinatorial computation of all terms
in Eq. (A2) is tedious while the formulas are cumbersome.
It is more instructive to investigate the variance in the limit
ω → ∞, in which only the terms Ck,k,k′,k′ = Ck,k′,k,k′ = 1 do
not vanish exponentially. Keeping only these terms, one easily
finds

var{Ê∞(n,N )} = 1

N − n + 1
− 1

N (N + 1)
. (A4)

The variance is of the order of 1/N for small n but
progressively grows up to 1 at n = N . For long trajectories
(N � 1), the second term can be neglected.

The same technique yields the large ω asymptotic behavior
of the variance of the ergodicity estimator:

var{F̂∞(n,N )} = 1

n2

n∑
k=1

1

N − k + 1
− 1

N (N + 1)
, (A5)

in which the second term can be neglected for N � 1.
For the case of Brownian motion, Fig. 13 illustrates how

the standard deviation of the mixing and ergodicity estimators
approaches their asymptotic limits [given by square roots
of Eqs. (A4) and (A5)] as ω increases. One can see that
the asymptotic formulas become accurate approximations for
ωσ � 2.

APPENDIX B: CONTINUOUS-TIME RANDOM WALKS

We consider the continuous-time random walks with inde-
pendent centered Gaussian jumps of variance σ 2, separated
by independent waiting times with a prescribed probabil-
ity density ψ(t). Throughout this Appendix, we use the
continuous-time version of the estimators, in which k, n, and
N are placed by t , �, and T , respectively:

Êω(�,T ) = 1

T − �

∫ T −�

0
dteiω[X(t+�)−X(t)]

− 1

T 2

∫ T

0
dt1

∫ T

0
dt2e

iω[X(t1)−X(t2)]. (B1)
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FIG. 13. The standard deviation of the mixing (a) and ergodicity
(b) estimators at several values of ω for Brownian motion with N =
100 and σ = 1. The large ω asymptotic limits given by square roots
of Eqs. (11) are shown by solid lines.

In order to obtain the mean 〈Êω(�,T )〉, one needs to
compute the expectation

hω(t,�) ≡ 〈eiω[X(t+�)−X(t)]〉. (B2)

The mean mixing estimator can then be expressed as

〈Êω(�,T )〉 = Hω(T − �,�)

T − �

− 2

T 2

∫ T

0
d�Hω(T − �,�), (B3)

where

Hω(t,�) =
∫ t

0
dt ′hω(t ′,�). (B4)

Note that Hω(T − �,�)/(T − �) is the mean time-averaged
characteristic function of increments of a CTRW.

For CTRWs, the expectation in Eq. (B2) includes the
average over the jump distribution and the average over the
waiting time distribution. The first average is elementary for a
Gaussian jump distribution:

hω(t,�) = 〈
e− 1

2 ω2σ 2N (t,t+�)〉
ψ
, (B5)

where N (t,t + �) is the random number of jumps between
times t and t + �, and 〈. . .〉ψ denotes the average over waiting
times. In other words, hω(t,�) is the Laplace transform of the
probability density of N (t,t + �) with respect to 1

2ω2σ 2.
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1. Number of jumps

The further computation of the function hω(t,�) relies on
renewal techniques [23]. First, the joint probability Pk,n(t,�)
for getting k jumps in the interval (0,t) and n > 0 jumps in the
interval (t,t + �) can be written as

Pk,n(t,�) =
∫ t

0
dt ′ψk(t ′)

∫ t+�

t

dt1ψ(t1 − t ′)

×
∫ t+�

t1

dt2ψ(t2 − t1) . . .

×
∫ t+�

tn−1

dtnψ(tn − tn−1)�0(t + � − tn),

=
∫ t

0
dt ′ψk(t ′)

∫ �

0
dt1ψ(t1 + t − t ′)

×
∫ �

t1

dt2ψ(t2 − t1) . . .

×
∫ �

tn−1

dtnψ(tn − tn−1)�0(� − tn), (B6)

where �0(t) is the probability of no jump until time t , and
ψk(t) is the probability density for the kth jump at time t . The
Laplace transform with respect to � yields

P̃k,n(t,s) ≡
∫ ∞

0
d�e−s�Pk,n(t,�)

=
∫ t

0
dt ′ψk(t ′)ψ̃t−t ′(s)[ψ̃(s)]n−1 1 − ψ̃(s)

s
, (B7)

where

ψ̃t (s) ≡
∫ ∞

0
dt ′e−st ′ψ(t ′ + t). (B8)

The second Laplace transform with respect to t yields

˜̃Pk,n(s ′,s) ≡
∫ ∞

0
dte−s ′t P̃k,n(t,s)

= [ψ̃(s ′)]k ˜̃ψ(s ′,s)[ψ̃(s)]n−1 1 − ψ̃(s)

s
, (B9)

where

˜̃ψ(s ′,s) ≡
∫ ∞

0
dte−st

∫ ∞

0
dt ′e−t ′s ′

ψ(t + t ′)

= ψ̃(s) − ψ̃(s ′)
s ′ − s

. (B10)

For the special case n = 0, one gets

Pk,0(t,�) =
∫ t

0
dt ′ψk(t ′)�0(t + � − t ′), (B11)

from which
˜̃Pk,0(s ′,s) = [ψ̃(s ′)]k ˜̃�0(s ′,s)

= [ψ̃(s ′)]k
1

ss ′

[
1 − sψ̃(s ′) − s ′ψ̃(s)

s − s ′

]
. (B12)

The average of the joint distribution Pk,n(t,�) over k yields
the marginal distribution of n steps in the interval (t,t + �):

Pn(t,�) ≡
∞∑

k=0

Pk,n(t,�), (B13)

from which

˜̃P0(s ′,s) = 1

1 − ψ̃(s ′)
1

ss ′

[
1 − sψ̃(s ′) − s ′ψ̃(s)

s − s ′

]
,

˜̃Pn(s ′,s) = 1

1 − ψ̃(s ′)
ψ̃(s) − ψ̃(s ′)

s ′ − s
[ψ̃(s)]n−1 1 − ψ̃(s)

s
.

(B14)

As a consequence, one gets

˜̃hω(s ′,s)

=
∞∑

n=0

e− 1
2 ω2σ 2n ˜̃Pn(s ′,s) = 1

ss ′(e
1
2 ω2σ 2 − ψ̃(s))

×
[

1 − ψ̃(s) + e
1
2 ω2σ 2 − 1

1 − ψ̃(s ′)

(
1 − sψ̃(s ′) − s ′ψ̃(s)

s − s ′

)]
.

(B15)

Setting ω = 0, one retrieves the probability normalization:
˜̃h0(s ′,s) = 1/(ss ′) from which h0(t,�) = 1, as expected. The
generating function ˜̃hω(s ′,s) can be used to compute the
moments of N (t,t + �).

To retrieve hω(t,�), one needs to perform the double
inverse Laplace transform. In general, the Laplace inversion
has to be performed numerically. For the special case of the
exponential waiting-time distribution, the inversion becomes
simple. Setting ψ(t) = e−t/δ/δ so that ψ̃(s) = 1/(1 + sδ), one
finds exactly

˜̃hω(s ′,s) = 1

s ′[s + (1 − e− 1
2 ω2σ 2

)/δ]
, (B16)

from which

hω(t,�) = exp
[−(1 − e− 1

2 ω2σ 2
)�/δ

]
. (B17)

This function corresponds to the Poisson probability distribu-
tion of the number of jumps in the interval (t,t + �) that does
not depend on t as expected:

Pn(t,�) = e−�/δ (�/δ)n

n!
. (B18)

2. Macroscopic limit

In the macroscopic limit of large t and �, the above
expressions can be simplified by considering small s and s ′.
In general, the Laplace-transformed probability density ψ̃(s)
behaves as

ψ̃(s) 	 1 − (δs)α + · · · (s → 0), (B19)

where 0 < α � 1 is the scaling exponent, and δ is a timescale
of one jump. This behavior incorporates both normal diffusion
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(α = 1) with a finite mean waiting time δ and anomalous
diffusion (α < 1) with a heavy-tailed waiting-time density:
ψ(t) 	 δα

|�(−α)| t
−1−α as t → ∞. In the macroscopic limit,

the variance σ 2 of one jump scales as 2Dαδα , where Dα

is the generalized diffusion coefficient. As a consequence,
e

1
2 ω2σ 2 	 1 + Dαω2δα + . . . In the lowest order in δ, Eq. (B15)

reads

˜̃hω(s ′,s) 	 1

s ′
sα−1

Dαω2 + sα
+ Dαω2(s ′α−1 − sα−1)

s ′α(s − s ′)(Dαω2 + sα)
. (B20)

In particular, the derivative with respect to 1
2ω2σ 2 = Dαδαω2

yields the mean number of jumps,

〈 ˜̃N (s ′,s)〉 	 s−α − s ′−α

sδα(s − s ′)
, (B21)

from which

〈N (t,t + �)〉 	 1

δα

∫ �

0
dt ′

(t + t ′)α−1

�(α)
= (t + �)α − tα

δα�(α + 1)
,

(B22)

as expected.
For normal diffusion (α = 1), the second term in Eq. (B20)

vanishes while the double inverse Laplace transform of the
first term yields

hω(t,�) 	 exp(−D1ω
2�), (B23)

which approximates Eq. (B17) in the macroscopic limit.
In turn, when α < 1, the dominant contribution comes

from the second term of Eq. (B20), especially in the limit of
large ω:

˜̃h∞(s ′,s) 	 s ′α−1 − sα−1

s ′α(s − s ′)
. (B24)

Using the identity for the double Laplace transform,

Ls1Ls2

{∫ t1

0
dt ′f (t ′)g(t1 − t ′ + t2)

}

= f̃ (s1)
g̃(s2) − g̃(s1)

s1 − s2
, (B25)

one can invert the above relation by setting f̃ (s) = s−α and
g̃(s) = sα−1:

h∞(t,�) 	 sin(πα)

π

2F1(α,α; α + 1; (1 + �/t)−1)

α(1 + �/t)α
,

(B26)

where the integral in Eq. (B25) was expressed in terms of the
hypergeometric function 2F1(a,b; c; z):

∫ 1

0
dx

xb−1(1 − x)c−b−1

(1 − zx)a
= �(b)�(c − b)

�(c)
2F1(a,b; c; z).

To compute H∞(t,�) (i.e., the integral of h∞(t,�) over t

in Eq. (B4)), one can add the extra factor s ′−1 to Eq. (B24) and

then again perform the Laplace inversion:

H∞(t,�) 	
∫ t

0
dt1

tα1

�(α + 1)

(t − t1 + �)−α

�(1 − α)

= t
sin(πα)

πα

2F1(α,α + 1; α + 2; (1 + �/t)−1)

(1 + α)(1 + �/t)α
,

(B27)

which gives the first term in Eq. (B3).
Using the formula 7.512.3 from Ref. [49] to integrate

H∞(T − �,�) over �, one shows that the second term in
Eq. (B3) is equal to 1 − α. We obtain therefore the asymptotic
limit of the mean mixing estimator as ω → ∞:

〈Ê∞(�,T )〉 	 α − 1 + sin(πα)

πα(1 + α)
(1 − �/T )α

× 2F1(α,α + 1; α + 2; 1 − �/T ). (B28)

This expression is one of the main analytical results of this
paper. As expected for a nonergodic CTRW, the estimator does
not vanish even for infinitely long trajectories. In fact, when
T → ∞, the last term approaches 1 so that 〈Ê∞(�,∞)〉 = α,
independently of �. The same limit is formally obtained as
� → 0: 〈Ê∞(0,T )〉 = α. In the opposite limit � → T , the
last term vanishes, yielding the negative value α − 1. In other
words, when the lag time � varies from 0 to T , the mean
mixing estimator decreases from α to α − 1, in sharp contrast
to the case of ergodic processes.

From Eq. (B28), one also deduces the asymptotic behavior
of the mean ergodicity estimator,

〈F̂∞(�,T )〉 	 1

�

∫ �

0
d�′〈Ê∞(�′,T )〉

= α − 1 + sin(πα)

πα(1 + α)

T

�

×
∫ 1

1−�/T

dxxα
2F1(α,α + 1; α + 2; x).

(B29)

We recall that Eqs. (B28) and (B29) are derived in the
macroscopic limit when � and T greatly exceed the time-step
scale δ.

APPENDIX C: BROWNIAN MOTION
WITH TWO DIFFUSION COEFFICIENTS

To illustrate the potential impact of time-dependent dif-
fusion coefficient onto the mixing estimator, we consider
the trajectory concatenating two Brownian trajectories with
distinct diffusion coefficients D1 and D2. In the discrete
case, one can generate such a process by adding independent
Gaussian variables with variance σ 2

1 = 2D1δ up to the step
m − 1, and then completing the second part by independent
Gaussian variables with σ 2

2 = 2D2δ, m − 1/2 being the
“border” between two parts. The computation of the mean
mixing estimator is cumbersome but straightforward:

〈Êω(n,N )〉 = S1

N − n + 1
− 2S2

N (N + 1)
, (C1)
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where

S1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m � N/2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(m − n)pn + (N + 1 − m − n)qn + q(pn−qn)
p−q

(n < m),

qn(N + 1 − n − m + q1−m(pm−qm)
p−q

) (m � n � N − m),

pmqn−m+1 1−(q/p)N+1−n

p−q
(n > N − m),

m > N/2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(m − n)pn + (N + 1 − m − n)qn + q(pn−qn)
p−q

(n � N − m),

(m − n)pn + qpn 1−(q/p)N+1−m

p−q
(N − m < n < m),

pmqn−m+1 1−(q/p)N+1−n

p−q
(n � m),

S2 = −(N + 1) + m − (m + 1)p + pm+1

(1 − p)2
+ N − m + 1 − (N − m + 2)q + qN−m+2

(1 − q)2
+ q(1 − pm)(1 − qN−m+1)

(1 − p)(1 − q)
, (C2)

with p = e−ω2σ 2
1 /2 and q = e−ω2σ 2

2 /2. The estimator vanishes
as ω → ∞, as expected. Setting m = 1 (or m = N + 1), one
retrieves the mean mixing estimator in Eq. (8) for Brownian
motion.

However, renormalizing the process by the standard de-
viation of its increments does not resolve the problem of
false nonmixing classifications. In fact, setting ω2 to be
the inverse of the variance of increments of the whole
trajectory, ω−2 = μσ 2

1 + (1 − μ)σ 2
2 (with μ = (m − 1)/N),

yields

p = e− 1
2 [μ+(1−μ)ν]−1

, q = e− 1
2 ν[μ+(1−μ)ν]−1

, (C3)

where ν = σ 2
2 /σ 2

1 . As a consequence, varying μ and ν, one can
make p or q close enough to 1 so that the mixing estimator
would not appear as small, wrongly suggesting nonmixing
behavior (similar conclusion holds for nonergodicity).

APPENDIX D: SEVERAL MODELS
OF ANOMALOUS DIFFUSION

In this Appendix, we describe the results of nonergodicity
testing on several models of anomalous diffusion and on
geometric Brownian motion.

1. Diffusion on percolating clusters

Anomalous diffusion on fractals, which can mimic a
multiscale hierarchical structure of the medium, is a common
model for interpreting single particle tracking experiments.
In particular, diffusion on percolating clusters has numerous
applications for modeling transport phenomena in porous
media [50]. For illustrative purposes, we only consider two-
dimensional percolating clusters on a square lattice at the
critical threshold probability pc ≈ 0.59 . . . These clusters are
known to have the fractal dimension df = 91/48 ≈ 1.896 . . .

and to yield the anomalous diffusion with α ≈ 0.7 [21,51]. To
test the mixing and ergodicity estimators, we first generate
10 random clusters on a 1000×1000 square lattice and
then simulate 1000 random walk trajectories of length N =
500 for each cluster. Figure 14 shows the mean mixing
and ergodicity estimators obtained by averaging over 1000
trajectories, each curve representing the average over one
cluster. These curves are almost indistinguishable, suggesting

a very weak dependence on the particular random realization
of the cluster. Both estimators do not reveal nonmixing or
nonergodic behavior as expected. A small bias (deviation

0 0.2 0.4 0.6 0.8 1
−1
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0.5

1

n/N

R
e{

E
ω
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,N
)}

(a)

percolation

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2
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n/N

R
e{

F
ω
(n

,N
)}

(b)

percolation

FIG. 14. The mean mixing (a) and ergodicity (b) estimators at
ω = 1 as a function of n for one coordinate X(n) of two-dimensional
random walk of length N = 500 on a critical percolating cluster
on a 1000×1000 square lattice, with the lattice step σ = 1. Each
curve presents the mean computed by averaging over 1000 trajectories
generated on one cluster. The curves obtained for ten random clusters
are almost identical. For comparison, light-gray shadowed region
delimits the mean plus and minus the standard deviation of each
estimator computed for Brownian motion according to Eqs. (8), (9),
and (11).
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from 0) at large n can be attributed to the relatively short
trajectory length: the bias is reduced for longer trajectories (not
shown).

2. Scaled Brownian motion

We also consider the scaled Brownian motion (sBm), a
simple model of anomalous diffusion, in which the diffusion
coefficient varies with time as D(t) = αDαtα−1, where 0 <

α < 2 is the scaling exponent, and Dα is the generalized
diffusion coefficient [24,25]. This is a nonstationary Gaussian
process obtained by rescaling Brownian motion W (t): X(t) =√

2DαW (tα), for which 〈[X(t1) − X(t2)]2〉 = 2Dα|tα1 − tα2 |.
The mean mixing estimator is then

〈Êω(n,N )〉 = 1

N − n + 1

N−n∑
k=0

q(k+n)α−kα

− 2

N (N + 1)

N−1∑
k1=0

N∑
k2=k1+1

qkα
2 −kα

1 , (D1)

where q = e−ω2σ 2/2 and σ 2 = 2Dαδα , δ being the time step
(the expression for the mean ergodicity estimator follows from
its definition). In the limit of large ωσ , both mean estimators
vanish, showing no evidence for nonmixing or nonergodic
behavior. At the same time, one can easily check that the
ensemble averaged MSD, 〈X2(t)〉 = 2Dαtα , differs from the
time averaged MSD along the trajectory of length T ,

1

T − t

∫ T −t

0
dt0〈[X(t0 + t) − X(t0)]2〉 	 2DαT α−1t (D2)

(for t � T ). In contrast to CTRW, this weak ergodicity
breaking progressively vanishes as the trajectory length T (or
N ) goes to infinity [24,25]. Figuratively speaking, the scaled
Brownian motion falls in between ergodic and nonergodic
processes, with nonergodic features appearing only for finite
length trajectories. The mixing and ergodicity estimators
do not capture this peculiar behavior that illustrates their
limitation.

3. CTRW with exponential cutoff

It is instructive to consider CTRW with exponential cutoff
to “switch” between ergodic and nonergodic behavior. In order
to simulate such CTRW trajectories, we generate random
waiting times with the Pareto type III distribution defined by
the cumulative function

F (t) = 1 −
(

1 + t

δs

)−α

exp

(
− t

Tc

)
, (D3)

where δs is the time scale (fixed to be 1), α the scaling
exponent, and Tc is the cutoff time. As discussed in Ref. [52],
the cumulative function Eq. (D3) can be explicitly inverted to
generate the waiting times τ from the uniformly distributed
variable η,

τ = αTcW

(
β

α
eβ/α(1 − η)−1/α

)
− δs, (D4)

where β = δs/Tc, and W (x) is the real branch of the Lambert
function satisfying W (x)eW (x) = x. In the limit Tc → ∞

(no cutoff), one retrieves the standard Pareto waiting times
generated as τ = δs[(1 − η)−1/α − 1].

The characteristic function and the moments of τ can be
written as [52]

〈eikτ 〉 = 1 + ikδse
β−ikδ(β − ikδ)α−1�(1 − α,β − ikδ),

〈τn〉 = δn
s e

β

n∑
j=1

(
n

j

)
j (−1)n−j

βj−α
�(j − α,β),

where �(k,z) is the incomplete � function. In particular, the
mean waiting time,

〈τ 〉 = δse
δs/Tc (δs/Tc)α−1�(1 − α,δs/Tc), (D5)

asymptotically behaves as

〈τ 〉 	
{
Tc(δs/Tc)α�(1 − α), (Tc � δs),
Tc, (Tc � δs).

(D6)

The generated sequence of waiting times, {τk}, is then
applied to produce positions of CTRW at equal time steps
δ by assigning the same random position xk to Xn over a time
interval between τ1 + · · · + τk and τ1 + · · · + τk + τk+1,

Xn =
{

0, 0 � nδ < τ1,

xk,
∑k

j=1 τj � nδ <
∑k+1

j=1 τj ,
(D7)

where xk = xk−1 + χk , with χk being independent Gaussian
displacements with mean zero and variance σ 2.

Figure 15 shows the mean and standard deviation of the
mixing and ergodicity estimators as a function of n computed
numerically for CTRW with exponential cutoff. When the
cutoff time Tc is significantly smaller than the trajectory length
(here, N = 1000), the mean mixing estimator 〈Êω(n,N )〉
vanishes very rapidly with n (dash-dotted line or circles), as
expected for Brownian motion. In turn, for larger Tc, long
waiting times break the ergodicity and mixing (dashed and
solid lines or triangles). Note also that 〈Êω(n,N )〉 at ω = 1
and ω = 10 almost coincide (similar for 〈F̂ω(n,N )〉). For the
ergodic case (Tc = 10), this is a visual artifact because the
mixing estimator at ω = 10 decreases much faster than that at
ω = 1. In turn, the weak dependence of the estimator on ω for
large ω is expected for nonergodic CTRW due to the nontrivial
limiting relation Eqs. (13) and (14).

The standard deviation of the mixing estimator is close to
that given by square root of Eq. (11) for Brownian motion for
Tc = 10, while it is larger for the nonergodic cases Tc = 102

and Tc = 103 (similar for the ergodicity estimator). As for the
mean value, the standard deviation does not much depend on
ω (once ω is large enough). The minimum of the standard
deviation at an intermediate n for the nonergodic cases can
be related to vanishing of the mean value when it crosses the
horizontal axis.

4. Geometric Brownian motion

We consider geometric (or exponential) Brownian motion
X(t), which is the basic model in finance, in particular, in the
Black-Scholes model for option pricing [36]. This stochastic
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FIG. 15. The mean (a, c) and standard deviation (b, d) of the
mixing (a, b) and ergodicity (c, d) estimators at ω = 1 (lines)
and ω = 10 (symbols) for CTRW with N = 1000, α = 0.7, σ = 1,
δs = 1, and exponential cutoff at Tc = 10,102,103.

process can be expressed as

X(t) = X(0) exp[(μ − σ 2/2)t + σW (t)], (D8)
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FIG. 16. The mean mixing (a) and ergodicity (b) estimators at
ω = 1 as a function of n for geometric Brownian motion with μ = 0
and σ = 0.01, σ = 0.1, and σ = 1. Each generated trajectory was
renormalized by the empirical standard deviation of its increments
in order to get comparable results for different σ . The mean was
computed numerically by averaging over 1000 trajectories.

where μ and σ are drift and standard deviation, W (t) is a
Wiener process (a standard Brownian motion), and the term
(μ − σ 2/2)t is explicitly added in order to prevent exponential
growth of the variance of X(t). This nonstationary process was
recently reported to be nonergodic [26] that may eventually
affect current views on trading strategies [32]. After a random
exploration time, the trajectory of geometric Brownian motion
tends to remain close to 0 for a very long time, which explains
the nonergodic behavior.

Figure 16 shows the mean mixing and ergodicity estimators
at ω = 1 as a function of n for geometric Brownian motion
with μ = 0. During the simulation time (N = 1000), the gBm
with σ = 0.01 does not have enough time to be stuck near 0,
yielding a rapid decay of both estimators (dash-dotted line).
This is a finite-length effect: much longer trajectories would
attend the “trapped” state near 0 and thus exhibit nonergodic
behavior (not shown). Instead of increasing the trajectory
length, we take larger σ for which the trapped state is reached
earlier on average. The nonmixing and nonergodic behavior
is clearly seen for σ = 0.1 and σ = 1. The latter case is also
instructive to illustrate that the estimator can take very small
values for moderate n for a nonergodic process. This is due to
the fact that a large part of the trajectory is almost 0. Inspecting
the whole dependence on n can thus be informative.
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YANN LANOISELÉE AND DENIS S. GREBENKOV PHYSICAL REVIEW E 93, 052146 (2016)

APPENDIX E: MATLAB CODE

For completeness, we provide a short Matlab code that can be directly applied for analyzing single-particle tracking
data.

function [E,F] = EFestimator(X,omega);
% This Matlab function implements the improved mixing and ergodicity estimators
% by Y. Lanoiselee and D. Grebenkov
% INPUT: X - vector containing positions of the analyzed trajectory
% omega - (optional) frequency (the default value is 2)
% OUTPUT: E - the real part of the mixing estimator as a function of n
% F - the real part of the ergodicity estimator as a function of n
if (nargin < 2) omega = 2; end % Default value for omega
N = length(X)-1; % Trajectory points are enumerated as X(0), ..., X(N)
X = X/std(diff(X)); % Normalization by the empirical standard deviation of displacements
for n=0:N,
D(n+1) = sum( exp( (1i)*omega*(X(n+1:end) - X(1:end-n)) ) )/(N-n+1);

end
E = D - abs(sum( exp((1i)*omega*X) ))^2/N/(N+1) + 1/N;
for n=1:N, F(n) = sum( E(2:n+1) )/n; end
F(N+1) = NaN; % The last point is not defined
end % end of the function
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