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We derive a general exact formula for the mean first passage time (MFPT) from a fixed point inside a
planar domain to an escape region on its boundary. The underlying mixed Dirichlet-Neumann boundary
value problem is conformally mapped onto the unit disk, solved exactly, and mapped back. The resulting
formula for the MFPT is valid for an arbitrary space-dependent diffusion coefficient, while the leading
logarithmic term is explicit, simple, and remarkably universal. In contrast to earlier works, we show that the
natural small parameter of the problem is the harmonic measure of the escape region, not its perimeter. The
conventional scaling of the MFPT with the area of the domain is altered when diffusing particles are
released near the escape region. These findings change the current view of escape problems and related
chemical or biochemical kinetics in complex, multiscale, porous or fractal domains, while the fundamental
relation to the harmonic measure opens new ways of computing and interpreting MFPTs.
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How long does it take for diffusing species to exit from
an irregular domain or to initiate a reaction on a catalytic
site or an enzyme? Since the first contribution by Lord
Rayleigh [1], the first-passage phenomena have attracted
much attention [2–5], and have been applied to numerous
chemical [6] and biological [7] problems such as diffusion-
influenced ligand binding to receptors on cell surfaces
[8,9], receptor trafficking in synaptic membranes [10],
diffusion in cellular microdomains [11], or foraging strat-
egies of animals [12], to name but a few. Most analytical
results were obtained for the mean first passage time
(MFPT) to a small region on the boundary, which can
represent a specific target, a catalytic germ, an active site, a
channel, or an exit to the outer space [5,13–21]. For a
“regular” planar domain Ω (whose perimeter j∂Ωj and
linear size jΩj12 are comparable, see Ref. [5]), the MFPT,
averaged over uniformly distributed starting points, was
shown to be jΩj=ðπDÞ½lnð1=εÞ þOð1Þ�, where D is the
diffusion coefficient, jΩj is the area of the domain, and
ε ¼ jΓj=j∂Ωj ≪ 1 is the perimeter of the escape region Γ
divided by the perimeter of the boundary ∂Ω [14]. In the
special case of a disk, Singer et al. also showed that the
MFPT from a fixed starting point (e.g., the center) exhibits
similar lnð1=εÞ behavior [15]. Since these seminal works,
the logarithmic divergence of the MFPTwith respect to the
normalized perimeter ε has become a common paradigm
(see the review in Ref. [5] and references therein).
In this Letter, we show that this paradigm is incomplete

for general domains and can be strongly misleading when
the starting point is fixed. We derive the exact formula for
the MFPT from a fixed point x0 to a connected escape
region Γ on the boundary of any simply connected (i.e.,
without “holes”) planar domain Ω. This formula is not
restricted to the narrow escape limit ε ≪ 1 and is valid for

an arbitrary space-dependent diffusion coefficient. Most
importantly, we reveal an earlier unnoticed fundamental
relation between the MFPT and the harmonic measure
of the escape region, ω ¼ ωx0ðΓÞ, i.e., the probability of
arriving at the escape region Γ before hitting the remaining
part of the boundary [22].
Before proceeding to rigorous results, we start with two

examples of “nonregular” domains casting doubts on the
normalized perimeter ε as the universal small parameter. If
the domain is a thin long rectangle ½0; L� × ½0; h�, the MFPT
to the left short edge from a starting point x0 ¼ ðx10; x20Þ is
equal to ðLx10 − 1

2
½x10�2Þ=D. Being independent of h, this

MFPT is thus not determined by the normalized perimeter
ε ¼ 1

2
h=ðLþ hÞ, even if the latter is very small. In the

second example, one takes a disk and replaces a small arc of
its boundary by a very corrugated (e.g., fractal) curve.
Keeping the diameter δ of the modified escape region
small, one can make its perimeter arbitrarily large. Since
the remaining part of the circle is fixed, the ratio ε ¼
jΓj=j∂Ωj can be made close to 1. When δ is small, the
MFPT should be large, in spite the fact of ε ≈ 1. These two
very basic examples illustrate the failure of the normalized
perimeter of the escape region as a determinant of the
MFPT when the starting point is fixed. We will show that
the natural characteristic that substitutes the normalized
perimeter ε is the harmonic measure ωx0ðΓÞ.
For Brownian motion starting from an interior point x0 of

a simply connected planar domain Ω, the MFPT T ðx0Þ to a
connected escape region Γ on the boundary ∂Ω satisfies the
backward Fokker-Planck equation [23]

ΔT ðx0Þ ¼ −
1

Dðx0Þ
; x0 ∈ Ω ð1Þ
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with mixed Dirichlet-Neumann boundary conditions

T ðx0Þ ¼ 0; x0 ∈ Γ;

∂nT ðx0Þ ¼ 0; x0 ∈ ∂ΩnΓ; ð2Þ

where ∂n is the normal derivative, Δ is the Laplace
operator, and Dðx0Þ is the space-dependent diffusion
coefficient. According to the Riemann mapping theorem,
the unit disk D can be mapped onto Ω by a conformal
mapping ϕx0ðzÞ∶D → Ω. We fix two parameters of the
conformal map by imposing that the origin of D is mapped
onto the starting point x0: ϕx0ð0Þ ¼ x0. Since the conformal
mapping preserves the harmonic measure, the preimage of
Γ is an arc γ of the unit circle of length 2πω. Note that the
harmonic measure is fully determined by the conformal
map. The third parameter of the conformal mapping is fixed
by rotating the arc γ to be (−πω, πω). Setting τðzÞ ¼
T ðϕx0ðzÞÞ for z ∈ D, Eqs. (1) and (2) are transformed into

ΔτðzÞ ¼ −jϕ0
x0ðzÞj2=Dðϕx0ðzÞÞ; z ∈ D;

τðzÞ ¼ 0; z ∈ γ;

∂nτðzÞ ¼ 0; z ∈ ∂Dnγ: ð3Þ

The solution of this mixed boundary value problem can be
reduced to dual trigonometric equations whose solutions
are well documented [24]. Skipping mathematical details
(see Sec. I of the Supplemental Material [25]), we obtain
for any interior starting point x0 ∈ Ω

T ðx0Þ ¼
Z
D

dzjϕ0
x0ðzÞj2

Dðϕx0ðzÞÞ
�
−
ln jzj
2π

þWωðzÞ
�

ð4Þ

with

WωðzÞ ¼
1

π
ln

 
j1 − zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − zeiπωÞð1 − ze−iπωÞ

p
j

2 sinðπω=2Þ

!
;

ð5Þ
in which the most challenging “ingredient” of the problem,
the mixed boundary condition, is fully incorporated
through the explicit function WωðzÞ. The function WωðzÞ
is universal; its dependence onΩ, Γ, and x0 enters uniquely
through the harmonic measure ω ¼ ωx0ðΓÞ. To return to
the domain Ω, the integration variable z is changed to
x ¼ ϕx0ðzÞ, which yields

T ðx0Þ ¼
Z
Ω

dx
DðxÞ

�
−
ln jϕ−1

x0 ðxÞj
2π

þWωx0
ðϕ−1

x0 ðxÞÞ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Green’s function

: ð6Þ

The exact solution (6) is our main result. The two terms
are, respectively, (i) the MFPT from x0 to the whole
boundary ∂Ω, with ð2πÞ−1 ln jϕ−1

x0 ðxÞj being the Dirichlet

Green’s function in Ω, and (ii) the contribution from
eventual reflections on the remaining part of the boundary,
∂ΩnΓ, until reaching the escape region Γ. The integral form
of the solution T ðx0Þ, which is valid for an arbitrary
function 1=DðxÞ, allows one to interpret the expression
in parentheses in Eq. (6) as the Green’s function of the
Laplace operator −Δ subject to mixed Dirichlet-Neumann
boundary condition (2). Numerical implementation of the
exact solution (6), its accuracy, and a comparison to
conventional numerical methods for computing MFPTs
are discussed in Sec. II of the Supplemental Material [25].
While conformal mappings have been intensively used to
solve diffusion-reaction problems (e.g., see Refs. [5,27–36]
and references therein), this powerful technique is applied
to the mixed boundary value problem in Eqs. (1) and (2) for
the first time. Prior to this work, no exact solution of this
MFPT problem was available, except for a few simple
domains [15,20,21]. While the proposed approach is
limited to planar Brownian diffusion (see the further
discussion in Sec. I of the Supplemental Material [25]),
the universality of the exact solution (6) results from the
existence of a conformal map for any simply connected
planar domain, even with a very irregular (e.g., fractal)
boundary. The only mathematical restriction on the domain
is that the original problem in Eqs. (1) and (2) should be
well defined. In the case of the unit disk with a constant
diffusivity, our general formula (6) reduces to the earlier
result [20]

T ðx0Þ ¼
1 − jx0j2

4D
þ π

D
Wεðx0Þ ð7Þ

(see Sec. III of the Supplemental Material [25] for the
derivation).
The general solution (6) allows one to investigate, for the

first time, the impact of heterogeneous diffusivity in MFPT
problems defined in nontrivial domains. In spite of its
evident importance for biological systems in which the
spatial heterogeneity is ubiquitous, only a few analytical
results about one-dimensional motion with space-
dependent diffusivity are available (e.g., see Ref. [37]).
Even for simple domains such as disks or rectangles, the
spatial dependence of the diffusion coefficient can prohibit
the separation of variables or, in the most favorable cases,
lead to complicated differential equations whose solutions
cannot be expressed in terms of usual special functions. In
this light, it is remarkable that the formula (6) provides an
exact solution even for the space-dependent diffusivity
DðxÞ. One can investigate, e.g., how the lower diffusivity in
the actin cortex near the plasma membrane would affect the
overall MFPT in flat living cells adhered to a surface, as
well as the effect of corrals on membrane diffusion.
When the harmonic measure of the escape region is

small, one can derive the perturbative expansion of the
MFPT (see Sec. IV of the Supplemental Material [25]):
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T ðx0Þ¼
jΩj
πDh

lnð1=ωÞ

þ
�jΩj lnð2=πÞ

πDh
þ 1

2π

Z
Ω

dx
DðxÞ ln

j1−ϕ−1
x0 ðxÞj2

jϕ−1
x0 ðxÞj

�

þω2

�
πjΩj
24Dh

−
Z
Ω
dx

V2ðϕ−1
x0 ðxÞÞ

DðxÞ
�
þOðω4Þ ð8Þ

with

V2ðzÞ ¼ −
π

8

�
z

ð1 − zÞ2 þ
z̄

ð1 − z̄Þ2
�
: ð9Þ

The first logarithmic term appears as the leading contri-
bution that involves the harmonic measure of the escape
region, ω ¼ ωx0ðΓÞ, the area of the domain, jΩj, and
the harmonic mean of the space-dependent diffusion
coefficient:

1

Dh
¼ 1

jΩj
Z
Ω

dx
DðxÞ ð10Þ

[ifDðxÞ ¼ D is constant, thenDh ¼ D]. The expansion (8)
and its leading term jΩj=ðπDhÞ lnð1=ωx0Þ present the
second main result that allows one to estimate the
MFPT directly through the harmonic measure.
In fact, when the starting point x0 is not too close to the

boundary, the leading term provides a good approximation
to the MFPT. To illustrate this point, we generated a planar
domain in Fig. 1(a) by iterative conformal maps (see Sec. V
of the Supplemental Material [25]). In order to emphasize
that the normalized perimeter ε of the escape region must
be replaced by the harmonic measure, we fix ε ¼ 0.035 and
then move the escape region Γs of perimeter εj∂Ωj along
the boundary of the domain, where s is the curvilinear
coordinate of the center of Γs. Figure 1(b) shows T ðx0Þ
from Eq. (6) and its leading term −jΩj=ðπDÞ lnωx0ðΓsÞ
from Eq. (8), as functions of the location s of the escape
region Γs on the boundary for x0 ¼ 0 (we set D ¼ 1 and
use dimensionless units). As expected, the MFPT signifi-
cantly varies when the escape region moves, showing
the dependence on the distance between x0 and Γ and
on the shape of the domain. For instance, the corner at the
curvilinear location s ≈ 2.7 is difficult to access so that the
related harmonic measure is very small, while the MFPT
exhibits a prominent peak rising up to 14. In turn, three
escape regions at s ≈ 0; 3.7; 7.3 are the closest to the
starting point and thus easily accessible, resulting in the
minima of the MFPT. One can see that the leading term
with the harmonic measure provides an excellent approxi-
mation to the MFPT. In turn, the conventional leading term
jΩj=ðπDÞ lnð1=εÞ (which is independent of the location) is
a poor estimate, in spite of the fact that ε is small. We
conclude that when the starting point is fixed, the harmonic
measure of the escape region should substitute the

normalized perimeter as the natural small parameter, at
least in two dimensions.
When the starting point x0 is close to the boundary, the

logarithmic term overestimates the MFPT, as illustrated in
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FIG. 1. (a) An irregular domain obtained by iterative conformal
maps (see Sec. 5 of the Supplemental Material [25]). The red and
gray circles indicate two considered starting points: x0 ¼ 0 and
x0 ¼ 0.4590þ 0.7936i; the asterisks with indicated curvilinear
coordinates present “milestones” along the boundary; the perim-
eter, the diameter, and the area of the domain are 10.96, 2, and
2.39, respectively. (b),(c) The MFPT T ðx0Þ (solid line), the
leading term jΩj=ðπDÞ ln½1=ωx0ðΓsÞ� (dashed line), and the
conventional leading term jΩj=ðπDÞ lnð1=εÞ (dotted line) as
functions of the location s of the escape region Γs on the
boundary of the shown domain, with x0 ¼ 0 (b) and x0 ¼
0.4590þ 0.7936i (c). Note that small fluctuations of the dotted
line are related to small variations in the perimeter of the escape
region due to discretization. Here, we set D ¼ 1 and use
dimensionless units
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Fig. 1(c) for the starting point x0 ¼ 0.4590þ 0.7936i. One
can see that the logarithmic term accurately captures the
behavior of the MFPT when the escape region is close to
the starting point (s between 1 and 3) while a significant but
nearly constant deviation appears for distant escape
regions. Here, the contribution from the next-order terms
in Eq. (8), in particular, that of orderOð1Þ, is comparable to
the logarithmic term.
This situation can also be illustrated on the example of

a thin rectangle ½0; L� × ½0; h� that we discussed at the
beginning. In fact, the harmonic measure ω of the short
edge on the left, seen from a point ðx10; h=2Þ, is approx-
imately expð−πx10=hÞ (see Sec. III of the Supplemental
Material [25]). Substitution of this expression into the first
term of Eq. (8) yields Lx10=D, which is close to the exact
MFPT ðLx10 − 1

2
½x10�2Þ=D. This simple example illustrates

that (i) even if the harmonic measure ω is very small, the
contribution from the remaining terms in Eq. (8) can still
be significant (e.g., the term − 1

2
½x10�2=D in this example),

and (ii) this MFPT does not scale with the area of the
domain. Interestingly, even though the area of the rectangle,
jΩj ¼ Lh, stands in front of the logarithmic term in Eq. (8),
the thickness h is then removed by the factor 1=h coming
from lnω. The last observation challenges another common
paradigm that the MFPT is proportional to the area of the
domain. In particular, if particles are released from a fixed
point near the escape region, most of them find it very
rapidly. Would the contribution to the MFPT from a few
particles that miss the escape region at the beginning and
thus explore the whole domain ensure the scaling
T ðx0Þ ∝ jΩj? The answer is in general negative as dis-
cussed in Sec. VI of the Supplemental Material [25] and
illustrated above in the case of a thin rectangle.
We can now revise the second example mentioned

above, namely, a disk with a small but highly corrugated
arc. According to Makarov’s theorem, the information
dimension of the harmonic measure is equal to 1 for planar
connected sets [38,39], implying thatωx0ðΓÞ scales with the
diameter of Γ [40]. In other words, the harmonic measure
of the corrugated arc, seen from a distant point x0, is
determined by the diameter δ of the arc, not the perimeter ε.
We thus recover the intuitively expected behavior
jΩj=ðπDÞ lnð1=δÞwhen δ is small. In turn, the conventional
formula jΩj=ðπDÞ lnð1=εÞ is again strongly misleading. We
emphasize that ω and ε are in general unrelated; e.g., a set
may have an arbitrarily small harmonic measure and
arbitrarily large perimeter, and vice versa.
These examples illustrate generic features of the MFPT

in porous media with long channels or fjords, and in
domains with irregular boundaries, in contrast to earlier
works that dealt with very regular domains whose perim-
eter j∂Ωj and linear size jΩj12 were comparable (see
Ref. [5]). In the latter case, the harmonic measure of the
escape region is proportional to its Lebesgue measure
(i.e., the perimeter), recovering the conventional lnð1=εÞ

behavior, the proportionality coefficient (the harmonic
measure density), and the related dependence on the
starting point x0 being “hidden” in the Oð1Þ term. We
stress that even for such regular domains, the dependence
on the starting point can be strong and provide the
dominant contribution to the MFPT, as illustrated in
Figs. 1(b) and 1(c). For instance, one can think of two
pores connected by a very narrow channel. If the particle
starts inside one pore while the escape region is located on
the boundary of the other pore, the MFPT can be made
arbitrarily large by controlling the channel width, even if
the escape region remains large whereas the condition
j∂Ωj ∼ jΩj12 is satisfied. Only the average of T ðx0Þ over the
starting point x0 might recover the lnð1=εÞ dependence in
the leading term. However, in many applications, the source
of particles and the escape region are well separated (e.g.,
viruses entering the cell at the membrane and searching for
the nucleus, or molecules released near the nucleus and
searching to escape through the membrane). The proposed
formula (6) thus yields a powerful tool to investigate these
search and escape phenomena.
The uncovered relation between the MFPT and the

harmonic measure brings new opportunities. On one hand,
one can profit from numerous analytical and numerical
results known for the harmonic measure on irregular
boundaries [22,38,39,41–51]. In particular, the concept
of diffusion screening [40,52] that has found numerous
implications for heterogeneous catalysis [53], fluid flow in
rough channels [36,54], and transport phenomena in
biological systems [55–58] can now be applied to the
MFPT. For instance, the harmonic measure of an escape
region at the bottom of a fjord can exhibit various types of
decay with the “depth,” depending on the shape [22,41].
Similar dependences are thus expected for the MFPT. On
the other hand, the conformal mapping is a powerful
analytical and numerical technique to represent the geo-
metric complexity of a domain through analytic properties
of the mapping function ϕx0ðzÞ [59]. The unit disk can be
conformally mapped onto any polygon either by a
Schwarz-Christoffel formula [60,61] or by a “zipper”
algorithm [62]. Once the conformal map is constructed,
finding the MFPT in complex domains is reduced to
computing the integrals in Eqs. (4) or (6). Most importantly,
the proposed approach is not limited to regular domains
(with j∂Ωj ∼ jΩj12) and allows one to study the MFPT for
irregular (e.g., fractal) boundaries and branching domains
with long rough channels and large surface-to-volume
ratios that are relevant for most applications. This approach
opens thus a new field of research on first passage times and
related chemical or biochemical kinetics in complex,
multiscale, and porous media.
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